Digital Diagnostics: The Potential Of Large Language Models In Recognizing Symptoms Of Common Illnesses
- URL: http://arxiv.org/abs/2405.06712v1
- Date: Thu, 9 May 2024 15:12:24 GMT
- Title: Digital Diagnostics: The Potential Of Large Language Models In Recognizing Symptoms Of Common Illnesses
- Authors: Gaurav Kumar Gupta, Aditi Singh, Sijo Valayakkad Manikandan, Abul Ehtesham,
- Abstract summary: This study evaluates each model diagnostic abilities by interpreting a user symptoms and determining diagnoses that fit well with common illnesses.
GPT-4 demonstrates higher diagnostic accuracy from its deep and complete history of training on medical data.
Gemini performs with high precision as a critical tool in disease triage, demonstrating its potential to be a reliable model.
- Score: 0.2995925627097048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent swift development of LLMs like GPT-4, Gemini, and GPT-3.5 offers a transformative opportunity in medicine and healthcare, especially in digital diagnostics. This study evaluates each model diagnostic abilities by interpreting a user symptoms and determining diagnoses that fit well with common illnesses, and it demonstrates how each of these models could significantly increase diagnostic accuracy and efficiency. Through a series of diagnostic prompts based on symptoms from medical databases, GPT-4 demonstrates higher diagnostic accuracy from its deep and complete history of training on medical data. Meanwhile, Gemini performs with high precision as a critical tool in disease triage, demonstrating its potential to be a reliable model when physicians are trying to make high-risk diagnoses. GPT-3.5, though slightly less advanced, is a good tool for medical diagnostics. This study highlights the need to study LLMs for healthcare and clinical practices with more care and attention, ensuring that any system utilizing LLMs promotes patient privacy and complies with health information privacy laws such as HIPAA compliance, as well as the social consequences that affect the varied individuals in complex healthcare contexts. This study marks the start of a larger future effort to study the various ways in which assigning ethical concerns to LLMs task of learning from human biases could unearth new ways to apply AI in complex medical settings.
Related papers
- Prompting Large Language Models for Supporting the Differential Diagnosis of Anemia [0.8602553195689511]
In practice, clinicians achieve a diagnosis by following a sequence of steps, such as laboratory exams, observations, or imaging.
The pathways to reach diagnosis decisions are documented by guidelines authored by expert organizations, which guide clinicians to reach a correct diagnosis through these sequences of steps.
Our study aimed to develop pathways similar to those that can be obtained in clinical guidelines.
We tested three Large Language Models (LLMs) -Generative Pretrained Transformer 4 (GPT-4), Large Language Model Meta AI (LLaMA), and Mistral -on a synthetic yet realistic dataset to differentially diagnose anemia and its subtypes.
arXiv Detail & Related papers (2024-09-20T06:47:36Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
This study presents a LLM-based diagnostic system that enhances planning capabilities by emulating doctors.
By utilizing real patient electronic medical record data, we constructed simulated dialogues between virtual patients and doctors.
arXiv Detail & Related papers (2024-04-04T06:16:35Z) - RareBench: Can LLMs Serve as Rare Diseases Specialists? [11.828142771893443]
Generalist Large Language Models (LLMs) have shown considerable promise in various domains, including medical diagnosis.
Rare diseases, affecting approximately 300 million people worldwide, often have unsatisfactory clinical diagnosis rates.
RareBench is a pioneering benchmark designed to evaluate the capabilities of LLMs on 4 critical dimensions within the realm of rare diseases.
We present an exhaustive comparative study of GPT-4's diagnostic capabilities against those of specialist physicians.
arXiv Detail & Related papers (2024-02-09T11:34:16Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Language models are susceptible to incorrect patient self-diagnosis in
medical applications [0.0]
We present a variety of LLMs with multiple-choice questions from U.S. medical board exams modified to include self-diagnostic reports from patients.
Our findings highlight that when a patient proposes incorrect bias-validating information, the diagnostic accuracy of LLMs drop dramatically.
arXiv Detail & Related papers (2023-09-17T19:56:39Z) - Leveraging A Medical Knowledge Graph into Large Language Models for
Diagnosis Prediction [7.5569033426158585]
We propose an innovative approach for augmenting the proficiency of Large Language Models (LLMs) in automated diagnosis generation.
We derive the KG from the National Library of Medicine's Unified Medical Language System (UMLS), a robust repository of biomedical knowledge.
Our approach offers an explainable diagnostic pathway, edging us closer to the realization of AI-augmented diagnostic decision support systems.
arXiv Detail & Related papers (2023-08-28T06:05:18Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue
Generation [150.52617238140868]
We propose low-resource medical dialogue generation to transfer the diagnostic experience from source diseases to target ones.
We also develop a Graph-Evolving Meta-Learning framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease.
arXiv Detail & Related papers (2020-12-22T13:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.