Leveraging A Medical Knowledge Graph into Large Language Models for
Diagnosis Prediction
- URL: http://arxiv.org/abs/2308.14321v1
- Date: Mon, 28 Aug 2023 06:05:18 GMT
- Title: Leveraging A Medical Knowledge Graph into Large Language Models for
Diagnosis Prediction
- Authors: Yanjun Gao, Ruizhe Li, John Caskey, Dmitriy Dligach, Timothy Miller,
Matthew M. Churpek and Majid Afshar
- Abstract summary: We propose an innovative approach for augmenting the proficiency of Large Language Models (LLMs) in automated diagnosis generation.
We derive the KG from the National Library of Medicine's Unified Medical Language System (UMLS), a robust repository of biomedical knowledge.
Our approach offers an explainable diagnostic pathway, edging us closer to the realization of AI-augmented diagnostic decision support systems.
- Score: 7.5569033426158585
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Electronic Health Records (EHRs) and routine documentation practices play a
vital role in patients' daily care, providing a holistic record of health,
diagnoses, and treatment. However, complex and verbose EHR narratives overload
healthcare providers, risking diagnostic inaccuracies. While Large Language
Models (LLMs) have showcased their potential in diverse language tasks, their
application in the healthcare arena needs to ensure the minimization of
diagnostic errors and the prevention of patient harm. In this paper, we outline
an innovative approach for augmenting the proficiency of LLMs in the realm of
automated diagnosis generation, achieved through the incorporation of a medical
knowledge graph (KG) and a novel graph model: Dr.Knows, inspired by the
clinical diagnostic reasoning process. We derive the KG from the National
Library of Medicine's Unified Medical Language System (UMLS), a robust
repository of biomedical knowledge. Our method negates the need for
pre-training and instead leverages the KG as an auxiliary instrument aiding in
the interpretation and summarization of complex medical concepts. Using
real-world hospital datasets, our experimental results demonstrate that the
proposed approach of combining LLMs with KG has the potential to improve the
accuracy of automated diagnosis generation. More importantly, our approach
offers an explainable diagnostic pathway, edging us closer to the realization
of AI-augmented diagnostic decision support systems.
Related papers
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - MAGDA: Multi-agent guideline-driven diagnostic assistance [43.15066219293877]
In emergency departments, rural hospitals, or clinics in less developed regions, clinicians often lack fast image analysis by trained radiologists.
In this work, we introduce a new approach for zero-shot guideline-driven decision support.
We model a system of multiple LLM agents augmented with a contrastive vision-language model that collaborate to reach a patient diagnosis.
arXiv Detail & Related papers (2024-09-10T09:10:30Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - medIKAL: Integrating Knowledge Graphs as Assistants of LLMs for Enhanced Clinical Diagnosis on EMRs [13.806201934732321]
medIKAL combines Large Language Models (LLMs) with knowledge graphs (KGs) to enhance diagnostic capabilities.
medIKAL assigns weighted importance to entities in medical records based on their type, enabling precise localization of candidate diseases within KGs.
We validated medIKAL's effectiveness through extensive experiments on a newly introduced open-sourced Chinese EMR dataset.
arXiv Detail & Related papers (2024-06-20T13:56:52Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Digital Diagnostics: The Potential Of Large Language Models In Recognizing Symptoms Of Common Illnesses [0.2995925627097048]
This study evaluates each model diagnostic abilities by interpreting a user symptoms and determining diagnoses that fit well with common illnesses.
GPT-4 demonstrates higher diagnostic accuracy from its deep and complete history of training on medical data.
Gemini performs with high precision as a critical tool in disease triage, demonstrating its potential to be a reliable model.
arXiv Detail & Related papers (2024-05-09T15:12:24Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
This study presents a LLM-based diagnostic system that enhances planning capabilities by emulating doctors.
By utilizing real patient electronic medical record data, we constructed simulated dialogues between virtual patients and doctors.
arXiv Detail & Related papers (2024-04-04T06:16:35Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
We introduce the Medical dialogue with Knowledge enhancement and clinical Pathway encoding framework.
The framework integrates an external knowledge enhancement module through a medical knowledge graph and an internal clinical pathway encoding via medical entities and physician actions.
arXiv Detail & Related papers (2024-03-11T10:57:45Z) - ChatCAD: Interactive Computer-Aided Diagnosis on Medical Image using
Large Language Models [53.73049253535025]
Large language models (LLMs) have recently demonstrated their potential in clinical applications.
This paper presents a method for integrating LLMs into medical-image CAD networks.
The goal is to merge the strengths of LLMs' medical domain knowledge and logical reasoning with the vision understanding capability of existing medical-image CAD models.
arXiv Detail & Related papers (2023-02-14T18:54:06Z) - DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language
Processing [5.022185333260402]
Diagnostic Reasoning Benchmarks, DR.BENCH, is a new benchmark for developing and evaluating cNLP models with clinical diagnostic reasoning ability.
DR.BENCH is the first clinical suite of tasks designed to be a natural language generation framework to evaluate pre-trained language models.
arXiv Detail & Related papers (2022-09-29T16:05:53Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.