Enhancing Traffic Prediction with Textual Data Using Large Language Models
- URL: http://arxiv.org/abs/2405.06719v1
- Date: Fri, 10 May 2024 03:14:26 GMT
- Title: Enhancing Traffic Prediction with Textual Data Using Large Language Models
- Authors: Xiannan Huang,
- Abstract summary: The study investigates two types of special scenarios: regional-level and node-level.
For regional-level scenarios, textual information is represented as a node connected to the entire network.
For node-level scenarios, embeddings from the large model represent additional nodes connected only to corresponding nodes.
This approach shows a significant improvement in prediction accuracy according to our experiment of New York Bike dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic prediction is pivotal for rational transportation supply scheduling and allocation. Existing researches into short-term traffic prediction, however, face challenges in adequately addressing exceptional circumstances and integrating non-numerical contextual information like weather into models. While, Large language models offer a promising solution due to their inherent world knowledge. However, directly using them for traffic prediction presents drawbacks such as high cost, lack of determinism, and limited mathematical capability. To mitigate these issues, this study proposes a novel approach. Instead of directly employing large models for prediction, it utilizes them to process textual information and obtain embeddings. These embeddings are then combined with historical traffic data and inputted into traditional spatiotemporal forecasting models. The study investigates two types of special scenarios: regional-level and node-level. For regional-level scenarios, textual information is represented as a node connected to the entire network. For node-level scenarios, embeddings from the large model represent additional nodes connected only to corresponding nodes. This approach shows a significant improvement in prediction accuracy according to our experiment of New York Bike dataset.
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models [27.306180426294784]
We introduce TPLLM, a novel traffic prediction framework leveraging Large Language Models (LLMs)
In this framework, we construct a sequence embedding layer based on Conal Neural Networks (LoCNNs) and a graph embedding layer based on Graph Contemporalal Networks (GCNs) to extract sequence features and spatial features.
Experiments on two real-world datasets demonstrate commendable performance in both full-sample and few-shot prediction scenarios.
arXiv Detail & Related papers (2024-03-04T17:08:57Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
In many cities, the available amount of traffic data is substantially below the minimum requirement due to the data collection expense.
This paper develops a graph network (GN)-based deep learning model LocaleGn that depicts the traffic dynamics using localized data.
It is also demonstrated that the learned knowledge from LocaleGn can be transferred across cities.
arXiv Detail & Related papers (2022-03-08T09:46:50Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - Graph modelling approaches for motorway traffic flow prediction [6.370406399003785]
This paper presents two new spatial-temporal approaches for building accurate short-term prediction along a popular motorway in Sydney.
The methods are built on proximity-based approaches, denoted backtracking and proximity, which uses the most recent and closest traffic flow information for each of the target counting stations along the motorway.
The results indicate that for short-term predictions (less than 10 minutes into the future), the proposed graph-based approaches outperform state-of-the-art deep learning models.
arXiv Detail & Related papers (2020-06-26T06:54:14Z) - Learning Geo-Contextual Embeddings for Commuting Flow Prediction [20.600183945696863]
Predicting commuting flows based on infrastructure and land-use information is critical for urban planning and public policy development.
Conventional models, such as gravity model, are mainly derived from physics principles and limited by their predictive power in real-world scenarios.
We propose Geo-contextual Multitask Embedding Learner (GMEL), a model that captures the spatial correlations from geographic contextual information for commuting flow prediction.
arXiv Detail & Related papers (2020-05-04T17:45:18Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - Deep Collaborative Embedding for information cascade prediction [58.90540495232209]
We propose a novel model called Deep Collaborative Embedding (DCE) for information cascade prediction.
We propose an auto-encoder based collaborative embedding framework to learn the node embeddings with cascade collaboration and node collaboration.
The results of extensive experiments conducted on real-world datasets verify the effectiveness of our approach.
arXiv Detail & Related papers (2020-01-18T13:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.