論文の概要: ISR: Invertible Symbolic Regression
- arxiv url: http://arxiv.org/abs/2405.06848v1
- Date: Fri, 10 May 2024 23:20:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 19:44:41.644727
- Title: ISR: Invertible Symbolic Regression
- Title(参考訳): ISR: Invertible Symbolic Regression
- Authors: Tony Tohme, Mohammad Javad Khojasteh, Mohsen Sadr, Florian Meyer, Kamal Youcef-Toumi,
- Abstract要約: Invertible Symbolic Regression(インバーティブル・シンボリック・レグレッション・レグレッション)は、あるデータセットの入力と出力の間の分析的関係を生成する機械学習技術である。
INNのアフィン結合ブロックをシンボリック・フレームワークに変換し、エンドツーエンドで微分可能なシンボリック・インバータブル・アーキテクチャを実現する。
ISRは密度推定タスクの(象徴的な)正規化フローとして機能することを示す。
- 参考スコア(独自算出の注目度): 7.499800486499609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an Invertible Symbolic Regression (ISR) method. It is a machine learning technique that generates analytical relationships between inputs and outputs of a given dataset via invertible maps (or architectures). The proposed ISR method naturally combines the principles of Invertible Neural Networks (INNs) and Equation Learner (EQL), a neural network-based symbolic architecture for function learning. In particular, we transform the affine coupling blocks of INNs into a symbolic framework, resulting in an end-to-end differentiable symbolic invertible architecture that allows for efficient gradient-based learning. The proposed ISR framework also relies on sparsity promoting regularization, allowing the discovery of concise and interpretable invertible expressions. We show that ISR can serve as a (symbolic) normalizing flow for density estimation tasks. Furthermore, we highlight its practical applicability in solving inverse problems, including a benchmark inverse kinematics problem, and notably, a geoacoustic inversion problem in oceanography aimed at inferring posterior distributions of underlying seabed parameters from acoustic signals.
- Abstract(参考訳): Invertible Symbolic Regression (ISR)法を提案する。
これは、可逆写像(またはアーキテクチャ)を介して、与えられたデータセットの入力と出力の間の分析的関係を生成する機械学習技術である。
Invertible Neural Networks (INNs) と EQL (Equation Learner) の原理を自然に組み合わせ、関数学習のためのニューラルネットワークに基づくシンボリックアーキテクチャを提案する。
特に、INNのアフィンカップリングブロックをシンボリック・フレームワークに変換し、エンドツーエンドで微分可能なシンボリック・インバータブル・アーキテクチャにより、効率的な勾配学習を実現する。
提案したISRフレームワークは、正規化を促進するスパーシティにも依存しており、簡潔で解釈不能な表現の発見を可能にする。
ISRは密度推定タスクの(象徴的な)正規化フローとして機能することを示す。
さらに,その逆問題に対する実用的適用性を強調し,特に音響信号から海底パラメータの後方分布を推定することを目的とした海洋学におけるジオアコースティック・インバージョン問題について述べる。
関連論文リスト
- SymbolNet: Neural Symbolic Regression with Adaptive Dynamic Pruning [1.0356366043809717]
モデル重み,入力特徴,数学的演算子を1つのトレーニングプロセスで動的に刈り取ることができる新しいフレームワークにおいて,記号回帰に対するニューラルネットワークアプローチを提案する。
提案手法は,計算資源制約の厳しい環境下での高次元データセットに対して,FPGA上でのナノ秒スケールレイテンシによる高速な推論を実現する。
論文 参考訳(メタデータ) (2024-01-18T12:51:38Z) - GFN-SR: Symbolic Regression with Generative Flow Networks [0.9208007322096533]
近年,DSR(Deep symbolic regression)がこの分野の一般的な手法として登場している。
ディープラーニングを用いてSRにアプローチするための代替フレームワーク(GFN-SR)を提案する。
GFN-SRは多種多様な最適表現を生成することができる。
論文 参考訳(メタデータ) (2023-12-01T07:38:05Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Transformer Meets Boundary Value Inverse Problems [4.165221477234755]
変圧器を用いた深部直接サンプリング法は境界値逆問題のクラスを解くために提案される。
慎重に設計されたデータと再構成された画像の間に学習した逆演算子を評価することにより、リアルタイムな再構成を実現する。
論文 参考訳(メタデータ) (2022-09-29T17:45:25Z) - Symplectically Integrated Symbolic Regression of Hamiltonian Dynamical
Systems [11.39873640706974]
シンプレクティック統合シンボリック回帰(SISR)は、データから物理支配方程式を学ぶための新しいテクニックである。
SISRは多層LSTM-RNNを用いて、確率的にハミルトン記号表現をサンプリングする。
論文 参考訳(メタデータ) (2022-09-04T03:17:40Z) - Bayesian Recurrent Units and the Forward-Backward Algorithm [91.39701446828144]
ベイズの定理を用いることで、ユニットワイド・リカレンスとフォワード・バックワードアルゴリズムに類似した後方再帰を導出する。
その結果得られたベイジアン再帰ユニットは、ディープラーニングフレームワーク内で再帰ニューラルネットワークとして統合することができる。
音声認識の実験は、最先端の繰り返しアーキテクチャの最後に派生したユニットを追加することで、訓練可能なパラメータの点で非常に低コストで性能を向上させることを示唆している。
論文 参考訳(メタデータ) (2022-07-21T14:00:52Z) - GSR: A Generalized Symbolic Regression Approach [13.606672419862047]
本論文では, 一般化記号回帰について述べる。
GSR法は、よく知られたシンボリック回帰ベンチマーク問題セットにおいて、最先端のいくつかの手法よりも優れていることを示す。
既存のベンチマークと比較して、より困難な新しいSRベンチマークセットであるSymSetを導入することで、GSRの強みを強調します。
論文 参考訳(メタデータ) (2022-05-31T07:20:17Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
ニューラルな暗示表現で形状を一般化することは、各関数空間上の学習先行値に比例する。
形状空間の学習をメタラーニング問題として定式化し、勾配に基づくメタラーニングアルゴリズムを利用してこの課題を解決する。
論文 参考訳(メタデータ) (2020-06-17T05:14:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。