ISR: Invertible Symbolic Regression
- URL: http://arxiv.org/abs/2405.06848v1
- Date: Fri, 10 May 2024 23:20:46 GMT
- Title: ISR: Invertible Symbolic Regression
- Authors: Tony Tohme, Mohammad Javad Khojasteh, Mohsen Sadr, Florian Meyer, Kamal Youcef-Toumi,
- Abstract summary: Invertible Symbolic Regression is a machine learning technique that generates analytical relationships between inputs and outputs of a given dataset via invertible maps.
We transform the affine coupling blocks of INNs into a symbolic framework, resulting in an end-to-end differentiable symbolic invertible architecture.
We show that ISR can serve as a (symbolic) normalizing flow for density estimation tasks.
- Score: 7.499800486499609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an Invertible Symbolic Regression (ISR) method. It is a machine learning technique that generates analytical relationships between inputs and outputs of a given dataset via invertible maps (or architectures). The proposed ISR method naturally combines the principles of Invertible Neural Networks (INNs) and Equation Learner (EQL), a neural network-based symbolic architecture for function learning. In particular, we transform the affine coupling blocks of INNs into a symbolic framework, resulting in an end-to-end differentiable symbolic invertible architecture that allows for efficient gradient-based learning. The proposed ISR framework also relies on sparsity promoting regularization, allowing the discovery of concise and interpretable invertible expressions. We show that ISR can serve as a (symbolic) normalizing flow for density estimation tasks. Furthermore, we highlight its practical applicability in solving inverse problems, including a benchmark inverse kinematics problem, and notably, a geoacoustic inversion problem in oceanography aimed at inferring posterior distributions of underlying seabed parameters from acoustic signals.
Related papers
- SymbolNet: Neural Symbolic Regression with Adaptive Dynamic Pruning [1.0356366043809717]
We propose a neural network approach to symbolic regression in a novel framework that allows dynamic pruning of model weights, input features, and mathematical operators in a single training process.
Our approach enables symbolic regression to achieve fast inference with nanosecond-scale latency on FPGAs for high-dimensional datasets in environments with stringent computational resource constraints.
arXiv Detail & Related papers (2024-01-18T12:51:38Z) - GFN-SR: Symbolic Regression with Generative Flow Networks [0.9208007322096533]
In recent years, deep symbolic regression (DSR) has emerged as a popular method in the field.
We propose an alternative framework (GFN-SR) to approach SR with deep learning.
GFN-SR is capable of generating a diverse set of best-fitting expressions.
arXiv Detail & Related papers (2023-12-01T07:38:05Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - Transformer Meets Boundary Value Inverse Problems [4.165221477234755]
Transformer-based deep direct sampling method is proposed for solving a class of boundary value inverse problem.
A real-time reconstruction is achieved by evaluating the learned inverse operator between carefully designed data and reconstructed images.
arXiv Detail & Related papers (2022-09-29T17:45:25Z) - Symplectically Integrated Symbolic Regression of Hamiltonian Dynamical
Systems [11.39873640706974]
Symplectically Integrated Symbolic Regression (SISR) is a novel technique for learning physical governing equations from data.
SISR employs a deep symbolic regression approach, using a multi-layer LSTM-RNN with mutation to probabilistically sample Hamiltonian symbolic expressions.
arXiv Detail & Related papers (2022-09-04T03:17:40Z) - Bayesian Recurrent Units and the Forward-Backward Algorithm [91.39701446828144]
Using Bayes's theorem, we derive a unit-wise recurrence as well as a backward recursion similar to the forward-backward algorithm.
The resulting Bayesian recurrent units can be integrated as recurrent neural networks within deep learning frameworks.
Experiments on speech recognition indicate that adding the derived units at the end of state-of-the-art recurrent architectures can improve the performance at a very low cost in terms of trainable parameters.
arXiv Detail & Related papers (2022-07-21T14:00:52Z) - GSR: A Generalized Symbolic Regression Approach [13.606672419862047]
Generalized Symbolic Regression presented in this paper.
We show that our GSR method outperforms several state-of-the-art methods on the well-known Symbolic Regression benchmark problem sets.
We highlight the strengths of GSR by introducing SymSet, a new SR benchmark set which is more challenging relative to the existing benchmarks.
arXiv Detail & Related papers (2022-05-31T07:20:17Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
Generalizing across shapes with neural implicit representations amounts to learning priors over the respective function space.
We formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task.
arXiv Detail & Related papers (2020-06-17T05:14:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.