SymbolNet: Neural Symbolic Regression with Adaptive Dynamic Pruning
- URL: http://arxiv.org/abs/2401.09949v2
- Date: Wed, 14 Aug 2024 03:45:37 GMT
- Title: SymbolNet: Neural Symbolic Regression with Adaptive Dynamic Pruning
- Authors: Ho Fung Tsoi, Vladimir Loncar, Sridhara Dasu, Philip Harris,
- Abstract summary: We propose a neural network approach to symbolic regression in a novel framework that allows dynamic pruning of model weights, input features, and mathematical operators in a single training process.
Our approach enables symbolic regression to achieve fast inference with nanosecond-scale latency on FPGAs for high-dimensional datasets in environments with stringent computational resource constraints.
- Score: 1.0356366043809717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrary to genetic programming, the neural network approach to symbolic regression can efficiently handle high-dimensional inputs and leverage gradient methods for faster equation searching. Common ways of constraining expression complexity often involve multistage pruning with fine-tuning, which can result in significant performance loss. In this work, we propose $\tt{SymbolNet}$, a neural network approach to symbolic regression in a novel framework that allows dynamic pruning of model weights, input features, and mathematical operators in a single training process, where both training loss and expression complexity are optimized simultaneously. We introduce a sparsity regularization term for each pruning type, which can adaptively adjust its strength, leading to convergence at a target sparsity ratio. Unlike most existing symbolic regression methods that struggle with datasets containing more than $\mathcal{O}(10)$ inputs, we demonstrate the effectiveness of our model on the LHC jet tagging task (16 inputs), MNIST (784 inputs), and SVHN (3072 inputs). Our approach enables symbolic regression to achieve fast inference with nanosecond-scale latency on FPGAs for high-dimensional datasets in environments with stringent computational resource constraints, such as the high-energy physics experiments at the LHC.
Related papers
- Adaptive Error-Bounded Hierarchical Matrices for Efficient Neural Network Compression [0.0]
This paper introduces a dynamic, error-bounded hierarchical matrix (H-matrix) compression method tailored for Physics-Informed Neural Networks (PINNs)
The proposed approach reduces the computational complexity and memory demands of large-scale physics-based models while preserving the essential properties of the Neural Tangent Kernel (NTK)
Empirical results demonstrate that this technique outperforms traditional compression methods, such as Singular Value Decomposition (SVD), pruning, and quantization, by maintaining high accuracy and improving generalization capabilities.
arXiv Detail & Related papers (2024-09-11T05:55:51Z) - Distributed Representations Enable Robust Multi-Timescale Symbolic Computation in Neuromorphic Hardware [3.961418890143814]
We describe a single-shot weight learning scheme to embed robust multi-timescale dynamics into attractor-based RSNNs.
We embed finite state machines into the RSNN dynamics by superimposing a symmetric autoassociative weight matrix.
This work introduces a scalable approach to embed robust symbolic computation through recurrent dynamics into neuromorphic hardware.
arXiv Detail & Related papers (2024-05-02T14:11:50Z) - Deep Generative Symbolic Regression [83.04219479605801]
Symbolic regression aims to discover concise closed-form mathematical equations from data.
Existing methods, ranging from search to reinforcement learning, fail to scale with the number of input variables.
We propose an instantiation of our framework, Deep Generative Symbolic Regression.
arXiv Detail & Related papers (2023-12-30T17:05:31Z) - Symbolic Regression on FPGAs for Fast Machine Learning Inference [2.0920303420933273]
High-energy physics community is investigating the potential of deploying machine-learning-based solutions on Field-Programmable Gate Arrays (FPGAs)
We introduce a novel end-to-end procedure that utilizes a machine learning technique called symbolic regression (SR)
We show that our approach can approximate a 3-layer neural network using an inference model that achieves up to a 13-fold decrease in execution time, down to 5 ns, while still preserving more than 90% approximation accuracy.
arXiv Detail & Related papers (2023-05-06T17:04:02Z) - Transformer-based Planning for Symbolic Regression [18.90700817248397]
We propose TPSR, a Transformer-based Planning strategy for Symbolic Regression.
Unlike conventional decoding strategies, TPSR enables the integration of non-differentiable feedback, such as fitting accuracy and complexity.
Our approach outperforms state-of-the-art methods, enhancing the model's fitting-complexity trade-off, Symbolic abilities, and robustness to noise.
arXiv Detail & Related papers (2023-03-13T03:29:58Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Complexity-Driven CNN Compression for Resource-constrained Edge AI [1.6114012813668934]
We propose a novel and computationally efficient pruning pipeline by exploiting the inherent layer-level complexities of CNNs.
We define three modes of pruning, namely parameter-aware (PA), FLOPs-aware (FA), and memory-aware (MA), to introduce versatile compression of CNNs.
arXiv Detail & Related papers (2022-08-26T16:01:23Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
End-to-end optimization capability offers neural image compression (NIC) superior lossy compression performance.
distinct models are required to be trained to reach different points in the rate-distortion (R-D) space.
We make efforts to formulate the essential mathematical functions to describe the R-D behavior of NIC using deep network and statistical modeling.
arXiv Detail & Related papers (2021-06-24T12:23:05Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
We introduce a "fully tensorized" RNN architecture which jointly encodes the separate weight matrices within each recurrent cell.
This approach reduces model size by several orders of magnitude, while still maintaining similar or better performance compared to standard RNNs.
arXiv Detail & Related papers (2020-10-08T18:24:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.