論文の概要: TacoERE: Cluster-aware Compression for Event Relation Extraction
- arxiv url: http://arxiv.org/abs/2405.06890v1
- Date: Sat, 11 May 2024 03:06:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 19:32:15.747030
- Title: TacoERE: Cluster-aware Compression for Event Relation Extraction
- Title(参考訳): TacoERE:イベント関係抽出のためのクラスタ認識圧縮
- Authors: Yong Guan, Xiaozhi Wang, Lei Hou, Juanzi Li, Jeff Pan, Jiaoyan Chen, Freddy Lecue,
- Abstract要約: イベント関係抽出は自然言語処理における決定的かつ基本的な課題である。
イベント関係抽出(TacoERE)を改善するクラスタ対応圧縮法を提案する。
- 参考スコア(独自算出の注目度): 47.89154684352463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event relation extraction (ERE) is a critical and fundamental challenge for natural language processing. Existing work mainly focuses on directly modeling the entire document, which cannot effectively handle long-range dependencies and information redundancy. To address these issues, we propose a cluster-aware compression method for improving event relation extraction (TacoERE), which explores a compression-then-extraction paradigm. Specifically, we first introduce document clustering for modeling event dependencies. It splits the document into intra- and inter-clusters, where intra-clusters aim to enhance the relations within the same cluster, while inter-clusters attempt to model the related events at arbitrary distances. Secondly, we utilize cluster summarization to simplify and highlight important text content of clusters for mitigating information redundancy and event distance. We have conducted extensive experiments on both pre-trained language models, such as RoBERTa, and large language models, such as ChatGPT and GPT-4, on three ERE datasets, i.e., MAVEN-ERE, EventStoryLine and HiEve. Experimental results demonstrate that TacoERE is an effective method for ERE.
- Abstract(参考訳): イベント関係抽出(ERE)は自然言語処理における決定的かつ基本的な課題である。
既存の作業は主にドキュメント全体を直接モデリングすることに焦点を当てており、長距離依存や情報の冗長性を効果的に扱えない。
これらの課題に対処するために,イベント関係抽出(TacoERE)の改良を目的としたクラスタ対応圧縮手法を提案する。
具体的には、まず、イベント依存関係をモデル化するためのドキュメントクラスタリングを紹介します。
ドキュメントをクラスタ内とクラスタ間に分割し、クラスタ内はクラスタ内の関係を強化することを目的としており、クラスタ間は任意の距離で関連イベントをモデル化しようとする。
第2に,クラスタの要約を利用して,情報冗長性とイベント距離を緩和するために,クラスタの重要なテキスト内容の簡素化と強調を行う。
我々は,RoBERTa などの事前学習言語モデルと ChatGPT や GPT-4 のような大規模言語モデルの両方において,MAVEN-ERE,EventStoryLine ,HiEve の3つのEREデータセットに対して広範な実験を行った。
実験の結果,TacoEREはEREに有効な方法であることがわかった。
関連論文リスト
- A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA) と呼ばれる新しいモデルに依存しないフレームワークを提案する。
CEFAは機能アライメントモジュールとコンテキスト拡張モジュールで構成される。
本手法は, 稀なカテゴリにおけるHOIモデルの検出性能を向上させるために, プラグアンドプレイモジュールとして機能する。
論文 参考訳(メタデータ) (2024-07-31T08:42:48Z) - JADS: A Framework for Self-supervised Joint Aspect Discovery and Summarization [3.992091862806936]
私たちのソリューションはトピックの発見と要約をひとつのステップに統合します。
テキストデータから,JADS(Joint Aspect Discovery and Summarization Algorithm)が入力からアスペクトを検出する。
提案手法は,地上の真理と高いセマンティックアライメントを実現し,現実的である。
論文 参考訳(メタデータ) (2024-05-28T23:01:57Z) - Semantic Structure Enhanced Event Causality Identification [57.26259734944247]
事象因果同定(ECI)は、非構造化テキスト中の事象間の因果関係を特定することを目的としている。
既存の方法は、イベント中心構造とイベント関連構造という、ECIタスクに不可欠な2種類の意味構造を過小評価する。
論文 参考訳(メタデータ) (2023-05-22T07:42:35Z) - MAVEN-ERE: A Unified Large-scale Dataset for Event Coreference,
Temporal, Causal, and Subevent Relation Extraction [78.61546292830081]
アノテーションを改良した大規模EREデータセットMAVEN-EREを構築した。
103,193個のイベント・コア・チェイン、1,216,217個の時間関係、57,992個の因果関係、15,841個の部分関係を含む。
実験の結果,MAVEN-ERE上でのEREは極めて困難であり,共同学習との相互関係を考慮すれば性能が向上することが示された。
論文 参考訳(メタデータ) (2022-11-14T13:34:49Z) - RAAT: Relation-Augmented Attention Transformer for Relation Modeling in
Document-Level Event Extraction [16.87868728956481]
我々はRelation-augmented Document-level Event extract (ReDEE)と呼ばれる関係依存をモデル化できる新しいDEEフレームワークを提案する。
関連情報をさらに活用するために,個別のイベント関連予測タスクを導入し,マルチタスク学習方式を採用し,イベント抽出性能を明示的に向上する。
論文 参考訳(メタデータ) (2022-06-07T15:11:42Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Document-level Event Extraction via Heterogeneous Graph-based
Interaction Model with a Tracker [23.990907956996413]
文書レベルのイベント抽出は、記事全体からイベント情報を認識することを目的としている。
この2つの課題のために既存の手法は有効ではない。
トラッカーを用いた異種グラフベースインタラクションモデルを提案する。
論文 参考訳(メタデータ) (2021-05-31T12:45:03Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z) - Clustering-based Unsupervised Generative Relation Extraction [3.342376225738321]
クラスタリングに基づく教師なし生成関係抽出フレームワーク(CURE)を提案する。
我々は「エンコーダ・デコーダ」アーキテクチャを用いて自己教師付き学習を行い、エンコーダが関係情報を抽出できるようにする。
我々のモデルは、ニューヨーク・タイムズ(NYT)と国連並列コーパス(UNPC)の標準データセットにおいて、最先端モデルよりも優れている。
論文 参考訳(メタデータ) (2020-09-26T20:36:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。