Replication Study and Benchmarking of Real-Time Object Detection Models
- URL: http://arxiv.org/abs/2405.06911v1
- Date: Sat, 11 May 2024 04:47:50 GMT
- Title: Replication Study and Benchmarking of Real-Time Object Detection Models
- Authors: Pierre-Luc Asselin, Vincent Coulombe, William Guimont-Martin, William Larrivée-Hardy,
- Abstract summary: We compare a variety of object detection models' accuracy and inference speed on multiple graphics cards.
We propose a unified training and evaluation pipeline, based on MMDetection's features, to better compare models.
Results exhibit a strong trade-off between accuracy and speed, prevailed by anchor-free models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work examines the reproducibility and benchmarking of state-of-the-art real-time object detection models. As object detection models are often used in real-world contexts, such as robotics, where inference time is paramount, simply measuring models' accuracy is not enough to compare them. We thus compare a large variety of object detection models' accuracy and inference speed on multiple graphics cards. In addition to this large benchmarking attempt, we also reproduce the following models from scratch using PyTorch on the MS COCO 2017 dataset: DETR, RTMDet, ViTDet and YOLOv7. More importantly, we propose a unified training and evaluation pipeline, based on MMDetection's features, to better compare models. Our implementation of DETR and ViTDet could not achieve accuracy or speed performances comparable to what is declared in the original papers. On the other hand, reproduced RTMDet and YOLOv7 could match such performances. Studied papers are also found to be generally lacking for reproducibility purposes. As for MMDetection pretrained models, speed performances are severely reduced with limited computing resources (larger, more accurate models even more so). Moreover, results exhibit a strong trade-off between accuracy and speed, prevailed by anchor-free models - notably RTMDet or YOLOx models. The code used is this paper and all the experiments is available in the repository at https://github.com/Don767/segdet_mlcr2024.
Related papers
- Benchmarking of Different YOLO Models for CAPTCHAs Detection and Classification [0.19972837513980318]
This paper provides an analysis and comparison of the YOLOv5, YOLOv8 and YOLOv10 models for webpage CAPTCHAs detection.
The study examines the nano (n), small (s), and medium (m) variants of YOLO architectures and use metrics such as Precision, Recall, F1 score, mAP@50 and inference speed to determine the real-life utility.
arXiv Detail & Related papers (2025-02-19T14:05:50Z) - LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content [62.816876067499415]
We propose LiveXiv: a scalable evolving live benchmark based on scientific ArXiv papers.
LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs.
We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities.
arXiv Detail & Related papers (2024-10-14T17:51:23Z) - Textile Anomaly Detection: Evaluation of the State-of-the-Art for Automated Quality Inspection of Carpet [0.0]
State-of-the-art unsupervised detection models were evaluated for the purpose of automated anomaly inspection of wool carpets.
A custom dataset of four unique types of carpet textures was created to thoroughly test the models.
The metrics of importance in this study were accuracy in detecting anomalous areas, the number of false detections, and the inference times of each model for real-time performance.
arXiv Detail & Related papers (2024-07-26T01:13:59Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
The main challenge in 3D object detection from LiDAR point clouds is achieving real-time performance without affecting the reliability of the network.
We present a solution to improve network inference speed and precision at the same time by implementing a fast dynamic voxelizer.
In addition, we propose a lightweight detection sub-head model for classifying predicted objects and filter out false detected objects.
arXiv Detail & Related papers (2023-01-10T16:22:04Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - Real-time Human Detection Model for Edge Devices [0.0]
Convolutional Neural Networks (CNNs) have replaced traditional feature extraction and machine learning models in detection and classification tasks.
Lightweight CNN models have been recently introduced for real-time tasks.
This paper suggests a CNN-based lightweight model that can fit on a limited edge device such as Raspberry Pi.
arXiv Detail & Related papers (2021-11-20T18:42:17Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
We propose a model that is accurate, robust, efficient, generalizable, and end-to-end trainable.
In order to achieve a better accuracy, we propose two lightweight modules.
DQInit dynamically initializes the queries of decoder from the inputs, enabling the model to achieve as good accuracy as the ones with multiple decoder layers.
QAMem is designed to enhance the discriminative ability of queries on low-resolution feature maps by assigning separate memory values to each query rather than a shared one.
arXiv Detail & Related papers (2021-05-27T13:51:42Z) - Meta-Cognition-Based Simple And Effective Approach To Object Detection [4.68287703447406]
We explore a meta-cognitive learning strategy for object detection to improve generalization ability while at the same time maintaining detection speed.
The experimental results indicate an improvement in absolute precision of 2.6% (minimum), and 4.4% (maximum), with no overhead to inference time.
arXiv Detail & Related papers (2020-12-02T13:36:51Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.