論文の概要: Input Snapshots Fusion for Scalable Discrete Dynamic Graph Nerual Networks
- arxiv url: http://arxiv.org/abs/2405.06975v1
- Date: Sat, 11 May 2024 10:05:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 19:07:50.076877
- Title: Input Snapshots Fusion for Scalable Discrete Dynamic Graph Nerual Networks
- Title(参考訳): スケーラブル離散型動的グラフニューラルネットワークのための入力スナップショット融合
- Authors: QingGuo Qi, Hongyang Chen, Minhao Cheng, Han Liu,
- Abstract要約: 入力 bf Snapshots bf Fusion ベースの動的 bf Graph Neural Network (SFDyG) を導入する。
入力ウィンドウ内でスナップショットのパーティショニングを取り除くことで、マルチグラフ(2つのノード間の1つ以上のエッジ)を得る。
スケーラブルな3段階のミニバッチトレーニング手法を提案し、フルバッチトレーニング手法と等価性を実証する。
- 参考スコア(独自算出の注目度): 27.616083395612595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic graphs are ubiquitous in the real world, yet there is a lack of suitable theoretical frameworks to effectively extend existing static graph models into the temporal domain. Additionally, for link prediction tasks on discrete dynamic graphs, the requirement of substantial GPU memory to store embeddings of all nodes hinders the scalability of existing models. In this paper, we introduce an Input {\bf S}napshots {\bf F}usion based {\bf Dy}namic {\bf G}raph Neural Network (SFDyG). By eliminating the partitioning of snapshots within the input window, we obtain a multi-graph (more than one edge between two nodes). Subsequently, by introducing a graph denoising problem with the assumption of temporal decayed smoothing, we integrate Hawkes process theory into Graph Neural Networks to model the generated multi-graph. Furthermore, based on the multi-graph, we propose a scalable three-step mini-batch training method and demonstrate its equivalence to full-batch training counterpart. Our experiments, conducted on eight distinct dynamic graph datasets for future link prediction tasks, revealed that SFDyG generally surpasses related methods.
- Abstract(参考訳): 動的グラフは現実世界ではユビキタスだが、既存の静的グラフモデルを時間領域に効果的に拡張する適切な理論的なフレームワークは存在しない。
さらに、離散動的グラフ上のリンク予測タスクでは、すべてのノードの埋め込みを保存するための実質的なGPUメモリの必要性は、既存のモデルのスケーラビリティを妨げる。
本稿では,入力 {\bf S}napshots {\bf F}usion based {\bf Dy}namic {\bf G}raph Neural Network (SFDyG)を紹介する。
入力ウィンドウ内でスナップショットのパーティショニングを取り除くことで、マルチグラフ(2つのノード間の1つ以上のエッジ)が得られる。
その後,時間減衰平滑化を仮定したグラフ記述問題を導入することにより,Hawkesプロセス理論をグラフニューラルネットワークに統合し,生成したマルチグラフをモデル化する。
さらに,マルチグラフに基づいて,スケーラブルな3段階のミニバッチトレーニング手法を提案し,フルバッチトレーニング手法と等価性を実証する。
将来のリンク予測タスクに対して,8つの異なる動的グラフデータセットを用いて実験を行った結果,SFDyGが一般的に関連する手法を超越していることが判明した。
関連論文リスト
- Sparse Training of Discrete Diffusion Models for Graph Generation [45.103518022696996]
SparseDiffは、ほとんど全ての大きなグラフがスパースであるという観察に基づく、新しい拡散モデルである。
エッジのサブセットを選択することで、SparseDiffは、ノイズ発生過程とノイズ発生ネットワーク内のスパースグラフ表現を効果的に活用する。
本モデルでは,小規模・大規模両方のデータセットにおいて,複数のメトリクスにわたる最先端性能を示す。
論文 参考訳(メタデータ) (2023-11-03T16:50:26Z) - From random-walks to graph-sprints: a low-latency node embedding
framework on continuous-time dynamic graphs [4.372841335228306]
本稿では,レイテンシが低く,最先端の高レイテンシモデルと競合する連続時間動的グラフ(CTDG)のフレームワークを提案する。
本フレームワークでは,マルチホップ情報を要約したタイムアウェアノード埋め込みを,入ってくるエッジ上のシングルホップ操作のみを用いて計算する。
グラフプリント機能と機械学習を組み合わせることで,競争性能が向上することを示す。
論文 参考訳(メタデータ) (2023-07-17T12:25:52Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Instant Graph Neural Networks for Dynamic Graphs [18.916632816065935]
Instant Graph Neural Network (InstantGNN) を提案する。
提案手法は,時間を要する反復計算を回避し,表現の即時更新と即時予測を可能にする。
本モデルでは,既存手法よりも高精度かつ高次精度で最先端の精度を実現する。
論文 参考訳(メタデータ) (2022-06-03T03:27:42Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
我々は,ノード表現の推論を目的とした双曲空間における動的グラフ表現を初めて学習する。
本稿では,HVGNNと呼ばれる新しいハイパーボリック変動グラフネットワークを提案する。
特に,動力学をモデル化するために,理論的に接地した時間符号化手法に基づく時間gnn(tgnn)を導入する。
論文 参考訳(メタデータ) (2021-04-06T01:44:15Z) - FeatureNorm: L2 Feature Normalization for Dynamic Graph Embedding [39.527059564775094]
グラフ畳み込みネットワーク(GCN)は、非ユークリッドアプリケーションドメインで広く研究され、利用されている。
本稿では,まずノード埋め込み空間における縮小特性を解析し,単純で汎用的な手法を設計する。
実世界の4つの動的グラフデータセットと競合ベースラインモデルの比較実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2021-02-27T09:13:47Z) - MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph
Representation and Learning [31.42901131602713]
本稿では,マルチレゾリューション・ハール型ウェーブレット(MathNet)を用いたグラフニューラルネットワークのためのフレームワークを提案する。
提案したMathNetは、特にデータセットにおいて、既存のGNNモデルよりも優れている。
論文 参考訳(メタデータ) (2020-07-22T05:00:59Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。