論文の概要: DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs
- arxiv url: http://arxiv.org/abs/2408.06966v1
- Date: Tue, 13 Aug 2024 15:21:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 17:06:48.927446
- Title: DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs
- Title(参考訳): DyG-Mamba:動的グラフ上の連続状態空間モデリング
- Authors: Dongyuan Li, Shiyin Tan, Ying Zhang, Ming Jin, Shirui Pan, Manabu Okumura, Renhe Jiang,
- Abstract要約: 動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
- 参考スコア(独自算出の注目度): 59.434893231950205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic graph learning aims to uncover evolutionary laws in real-world systems, enabling accurate social recommendation (link prediction) or early detection of cancer cells (classification). Inspired by the success of state space models, e.g., Mamba, for efficiently capturing long-term dependencies in language modeling, we propose DyG-Mamba, a new continuous state space model (SSM) for dynamic graph learning. Specifically, we first found that using inputs as control signals for SSM is not suitable for continuous-time dynamic network data with irregular sampling intervals, resulting in models being insensitive to time information and lacking generalization properties. Drawing inspiration from the Ebbinghaus forgetting curve, which suggests that memory of past events is strongly correlated with time intervals rather than specific details of the events themselves, we directly utilize irregular time spans as control signals for SSM to achieve significant robustness and generalization. Through exhaustive experiments on 12 datasets for dynamic link prediction and dynamic node classification tasks, we found that DyG-Mamba achieves state-of-the-art performance on most of the datasets, while also demonstrating significantly improved computation and memory efficiency.
- Abstract(参考訳): 動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としており、正確な社会的レコメンデーション(リンク予測)や、がん細胞の早期検出(分類)を可能にする。
言語モデリングにおける長期依存性を効率的に把握する状態空間モデルであるMambaの成功に触発されて,動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
具体的には、SSMの制御信号として入力を使用することは、不規則なサンプリング間隔を持つ連続時間動的ネットワークデータには適さないことを発見し、その結果、時間情報に敏感で一般化性に欠けるモデルが得られた。
Ebbinghaus forgetting curveからインスピレーションを得て、過去の出来事の記憶はイベント自体の特定の詳細ではなく時間間隔と強く相関していることを示唆し、不規則な時間空間をSSMの制御信号として直接利用して、大きな堅牢性と一般化を実現している。
動的リンク予測と動的ノード分類タスクのための12のデータセットに対する徹底的な実験により、DyG-Mambaは、ほとんどのデータセットで最先端のパフォーマンスを実現し、計算とメモリ効率を著しく改善した。
関連論文リスト
- DyGMamba: Efficiently Modeling Long-Term Temporal Dependency on Continuous-Time Dynamic Graphs with State Space Models [26.989676396289145]
連続時間動的グラフ(CTDG)の学習モデルであるDyGMambaを提案する。
DyGMambaは、ほとんどのケースで最先端を実現していることを示す。
論文 参考訳(メタデータ) (2024-08-08T18:25:14Z) - Long Range Propagation on Continuous-Time Dynamic Graphs [18.5534584418248]
Continuous-Time Graph Anti-Symmetric Network (CTAN) は情報伝達の効率化を目的としている。
合成長範囲ベンチマークと実世界のベンチマークにおけるCTANの実証的性能は他の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-06-04T19:42:19Z) - State Space Models on Temporal Graphs: A First-Principles Study [30.531930200222423]
深層グラフ学習の研究は、動的挙動を示す実世界の複雑なシステムに応答して、静的グラフから時間グラフへ移行した。
RNNやTransformerのようなシーケンスモデルは、このような時間グラフをモデル化するための主要なバックボーンネットワークである。
時間グラフのダイナミクスをモデル化するためのグラフ状態空間モデルであるGraphSSMを開発した。
論文 参考訳(メタデータ) (2024-06-03T02:56:11Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
非定常PGDSは、基礎となる遷移行列が時間とともに進化できるように提案されている。
後続シミュレーションを行うために, 完全共役かつ効率的なギブスサンプリング装置を開発した。
実験により,提案した非定常PGDSは,関連するモデルと比較して予測性能が向上することを示した。
論文 参考訳(メタデータ) (2024-02-26T04:39:01Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Backbone-based Dynamic Graph Spatio-Temporal Network for Epidemic
Forecasting [3.382729969842304]
正確な流行予測は伝染病の予防に重要な課題である。
多くのディープラーニングベースのモデルは、空間情報を構築する際に静的グラフや動的グラフにのみフォーカスする。
バックボーンに基づく動的グラフ時空間ネットワーク(BDGSTN)という新しいモデルを提案する。
論文 参考訳(メタデータ) (2023-12-01T10:34:03Z) - Exploring Time Granularity on Temporal Graphs for Dynamic Link
Prediction in Real-world Networks [0.48346848229502226]
動的グラフニューラルネットワーク(DGNN)は、動的グラフ構造化データを処理するための主要なアプローチである。
本稿では,DGNNを訓練する際の時間粒度が動的グラフに与える影響について,広範な実験を通して検討する。
論文 参考訳(メタデータ) (2023-11-21T00:34:53Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
本稿では,マルチスケールグラフ畳み込みと,G3Dという空間時間グラフ畳み込み演算子を結合する簡単な方法を提案する。
これらの提案を結合することにより,MS-G3Dという強力な特徴抽出器を開発し,そのモデルが3つの大規模データセット上で従来の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-03-31T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。