論文の概要: Input Snapshots Fusion for Scalable Discrete-Time Dynamic Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2405.06975v2
- Date: Wed, 12 Feb 2025 04:48:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:45:53.075409
- Title: Input Snapshots Fusion for Scalable Discrete-Time Dynamic Graph Neural Networks
- Title(参考訳): 離散時間動的ニューラルネットワークのための入力スナップショット融合
- Authors: QingGuo Qi, Hongyang Chen, Minhao Cheng, Han Liu,
- Abstract要約: 本稿では,Hawkesプロセスとグラフニューラルネットワークを組み合わせることで,動的グラフの時間的および構造的パターンを効果的に捉えるSFDyGを提案する。
複数のスナップショットを1つの時間グラフに融合することで、SFDyGはスナップショットの数から計算複雑性を分離し、効率的なフルバッチとミニバッチのトレーニングを可能にする。
- 参考スコア(独自算出の注目度): 27.616083395612595
- License:
- Abstract: In recent years, there has been a surge in research on dynamic graph representation learning, primarily focusing on modeling the evolution of temporal-spatial patterns in real-world applications. However, within the domain of discrete-time dynamic graphs, the exploration of temporal edges remains underexplored. Existing approaches often rely on additional sequential models to capture dynamics, leading to high computational and memory costs, particularly for large-scale graphs. To address this limitation, we propose the Input {\bf S}napshots {\bf F}usion based {\bf Dy}namic {\bf G}raph Neural Network (SFDyG), which combines Hawkes processes with graph neural networks to capture temporal and structural patterns in dynamic graphs effectively. By fusing multiple snapshots into a single temporal graph, SFDyG decouples computational complexity from the number of snapshots, enabling efficient full-batch and mini-batch training. Experimental evaluations on eight diverse dynamic graph datasets for future link prediction tasks demonstrate that SFDyG consistently outperforms existing methods.
- Abstract(参考訳): 近年,リアルタイムアプリケーションにおける時間空間パターンの進化をモデル化することを中心に,動的グラフ表現学習の研究が急増している。
しかし、離散時間動的グラフの領域内では、時間的エッジの探索は未探索のままである。
既存のアプローチは、動的をキャプチャするための追加のシーケンシャルモデルに依存することが多く、特に大規模グラフにおいて高い計算とメモリコストをもたらす。
この制限に対処するため, 動的グラフの時間的・構造的パターンを効果的に捉えるために, ホークス過程とグラフニューラルネットワークを組み合わせた Input {\bf S}napshots {\bf F}usion based {\bf Dy}namic {\bf G}raph Neural Network (SFDyG) を提案する。
複数のスナップショットを1つの時間グラフに融合することで、SFDyGはスナップショットの数から計算複雑性を分離し、効率的なフルバッチとミニバッチのトレーニングを可能にする。
将来のリンク予測タスクのための8つの多様な動的グラフデータセットに関する実験的評価は、SFDyGが既存の手法を一貫して上回っていることを示す。
関連論文リスト
- ScaDyG:A New Paradigm for Large-scale Dynamic Graph Learning [31.629956388962814]
ScaDyGは動的グラフネットワークのためのタイムアウェアなスケーラブルな学習パラダイムである。
12のデータセットの実験では、ScaDyGは、ノードレベルとリンクレベルの両方の下流タスクにおいて、互換性のあるパフォーマンス、あるいは他のSOTAメソッドよりも優れています。
論文 参考訳(メタデータ) (2025-01-27T12:39:16Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - State Space Models on Temporal Graphs: A First-Principles Study [30.531930200222423]
深層グラフ学習の研究は、動的挙動を示す実世界の複雑なシステムに応答して、静的グラフから時間グラフへ移行した。
RNNやTransformerのようなシーケンスモデルは、このような時間グラフをモデル化するための主要なバックボーンネットワークである。
時間グラフのダイナミクスをモデル化するためのグラフ状態空間モデルであるGraphSSMを開発した。
論文 参考訳(メタデータ) (2024-06-03T02:56:11Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Decoupled Graph Neural Networks for Large Dynamic Graphs [14.635923016087503]
大規模動的グラフのための疎結合グラフニューラルネットワークを提案する。
このアルゴリズムは,両種類の動的グラフにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-05-14T23:00:10Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - Time-aware Random Walk Diffusion to Improve Dynamic Graph Learning [3.4012007729454816]
TiaRaは、グラフスナップショットの離散時間シーケンスとして表される動的グラフを拡大するための、新しい拡散ベースの方法である。
TiaRaは与えられた動的グラフを効果的に拡張し、様々なグラフデータセットやタスクに対する動的GNNモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2022-11-02T15:55:46Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
本稿では,学習損失による時間依存性を選択的に表現し,計算の並列性を改善するための効率的な動的グラフ lEarning (EDGE) を提案する。
EDGEは、数百万のノードと数億の時間的イベントを持つ動的グラフにスケールでき、新しい最先端(SOTA)パフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2021-12-14T22:24:53Z) - Temporal Graph Networks for Deep Learning on Dynamic Graphs [4.5158585619109495]
時系列グラフネットワーク(TGN)は,時系列イベントのシーケンスとして表される動的グラフの深層学習のための汎用的で効率的なフレームワークである。
メモリモジュールとグラフベースの演算子を組み合わせた新しい組み合わせにより、TGNは、計算効率が向上した以前のアプローチを大幅に上回ることができる。
論文 参考訳(メタデータ) (2020-06-18T16:06:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。