Input Snapshots Fusion for Scalable Discrete-Time Dynamic Graph Neural Networks
- URL: http://arxiv.org/abs/2405.06975v2
- Date: Wed, 12 Feb 2025 04:48:53 GMT
- Title: Input Snapshots Fusion for Scalable Discrete-Time Dynamic Graph Neural Networks
- Authors: QingGuo Qi, Hongyang Chen, Minhao Cheng, Han Liu,
- Abstract summary: We propose SFDyG, which combines Hawkes processes with graph neural networks to capture temporal and structural patterns in dynamic graphs effectively.<n>By fusing multiple snapshots into a single temporal graph, SFDyG decouples computational complexity from the number of snapshots, enabling efficient full-batch and mini-batch training.
- Score: 27.616083395612595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, there has been a surge in research on dynamic graph representation learning, primarily focusing on modeling the evolution of temporal-spatial patterns in real-world applications. However, within the domain of discrete-time dynamic graphs, the exploration of temporal edges remains underexplored. Existing approaches often rely on additional sequential models to capture dynamics, leading to high computational and memory costs, particularly for large-scale graphs. To address this limitation, we propose the Input {\bf S}napshots {\bf F}usion based {\bf Dy}namic {\bf G}raph Neural Network (SFDyG), which combines Hawkes processes with graph neural networks to capture temporal and structural patterns in dynamic graphs effectively. By fusing multiple snapshots into a single temporal graph, SFDyG decouples computational complexity from the number of snapshots, enabling efficient full-batch and mini-batch training. Experimental evaluations on eight diverse dynamic graph datasets for future link prediction tasks demonstrate that SFDyG consistently outperforms existing methods.
Related papers
- ScaDyG:A New Paradigm for Large-scale Dynamic Graph Learning [31.629956388962814]
ScaDyG is a time-aware scalable learning paradigm for dynamic graph networks.
experiments on 12 datasets demonstrate that ScaDyG performs comparably well or even outperforms other SOTA methods in both node and link-level downstream tasks.
arXiv Detail & Related papers (2025-01-27T12:39:16Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - State Space Models on Temporal Graphs: A First-Principles Study [30.531930200222423]
Research on deep graph learning has shifted from static graphs to temporal graphs in response to real-world complex systems that exhibit dynamic behaviors.
Sequence models such as RNNs or Transformers have long been the predominant backbone networks for modeling such temporal graphs.
We develop GraphSSM, a graph state space model for modeling the dynamics of temporal graphs.
arXiv Detail & Related papers (2024-06-03T02:56:11Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Sparse Training of Discrete Diffusion Models for Graph Generation [45.103518022696996]
We introduce SparseDiff, a novel diffusion model based on the observation that almost all large graphs are sparse.
By selecting a subset of edges, SparseDiff effectively leverages sparse graph representations both during the noising process and within the denoising network.
Our model demonstrates state-of-the-art performance across multiple metrics on both small and large datasets.
arXiv Detail & Related papers (2023-11-03T16:50:26Z) - From random-walks to graph-sprints: a low-latency node embedding
framework on continuous-time dynamic graphs [4.372841335228306]
We propose a framework for continuous-time-dynamic-graphs (CTDGs) that has low latency and is competitive with state-of-the-art, higher latency models.
In our framework, time-aware node embeddings summarizing multi-hop information are computed using only single-hop operations on the incoming edges.
We demonstrate that our graph-sprints features, combined with a machine learning, achieve competitive performance.
arXiv Detail & Related papers (2023-07-17T12:25:52Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Decoupled Graph Neural Networks for Large Dynamic Graphs [14.635923016087503]
We propose a decoupled graph neural network for large dynamic graphs.
We show that our algorithm achieves state-of-the-art performance in both kinds of dynamic graphs.
arXiv Detail & Related papers (2023-05-14T23:00:10Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Time-aware Random Walk Diffusion to Improve Dynamic Graph Learning [3.4012007729454816]
TiaRa is a novel diffusion-based method for augmenting a dynamic graph represented as a discrete-time sequence of graph snapshots.
We show that TiaRa effectively augments a given dynamic graph, and leads to significant improvements in dynamic GNN models for various graph datasets and tasks.
arXiv Detail & Related papers (2022-11-02T15:55:46Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Instant Graph Neural Networks for Dynamic Graphs [18.916632816065935]
We propose Instant Graph Neural Network (InstantGNN), an incremental approach for the graph representation matrix of dynamic graphs.
Our method avoids time-consuming, repetitive computations and allows instant updates on the representation and instant predictions.
Our model achieves state-of-the-art accuracy while having orders-of-magnitude higher efficiency than existing methods.
arXiv Detail & Related papers (2022-06-03T03:27:42Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
We propose Efficient Dynamic Graph lEarning (EDGE), which selectively expresses certain temporal dependency via training loss to improve the parallelism in computations.
We show that EDGE can scale to dynamic graphs with millions of nodes and hundreds of millions of temporal events and achieve new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2021-12-14T22:24:53Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z) - FeatureNorm: L2 Feature Normalization for Dynamic Graph Embedding [39.527059564775094]
Graph convolutional network (GCN) has been widely explored and used in non-Euclidean application domains.
In this paper, we analyze the shrinking properties in the node embedding space at first, and then design a simple yet versatile method.
Experiments on four real-world dynamic graph datasets compared with competitive baseline models demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-02-27T09:13:47Z) - MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph
Representation and Learning [31.42901131602713]
We propose a framework for graph neural networks with multiresolution Haar-like wavelets, or MathNet, with interrelated convolution and pooling strategies.
The proposed MathNet outperforms various existing GNN models, especially on big data sets.
arXiv Detail & Related papers (2020-07-22T05:00:59Z) - Temporal Graph Networks for Deep Learning on Dynamic Graphs [4.5158585619109495]
We present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events.
Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient.
arXiv Detail & Related papers (2020-06-18T16:06:18Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
Graph representation learning has achieved a remarkable success in many graph-based applications, such as node classification, prediction, and community detection.
However, for some kind of graph applications, such as graph compression and edge partition, it is very hard to reduce them to some graph representation learning tasks.
In this paper, we propose to attack the graph ordering problem behind such applications by a novel learning approach.
arXiv Detail & Related papers (2020-01-18T09:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.