論文の概要: ResSurv: Cancer Survival Analysis Prediction Model Based on Residual Networks
- arxiv url: http://arxiv.org/abs/2405.06992v1
- Date: Sat, 11 May 2024 11:50:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 18:57:41.916957
- Title: ResSurv: Cancer Survival Analysis Prediction Model Based on Residual Networks
- Title(参考訳): ResSurv:残留ネットワークに基づく癌生存分析予測モデル
- Authors: Wankang Zhai,
- Abstract要約: 本稿では,Deep Residual Learningに基づく新しいフレームワークを提案する。
ニューラルネットワークの損失関数については,Cox比例ハザード法を継承した。
最後に、異なる深さのResSurvネットワークを比較し、高次元の特徴を効果的に抽出できることを見出した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Survival prediction is an important branch of cancer prognosis analysis. The model that predicts survival risk through TCGA genomics data can discover genes related to cancer and provide diagnosis and treatment recommendations based on patient characteristics. We found that deep learning models based on Cox proportional hazards often suffer from overfitting when dealing with high-throughput data. Moreover, we found that as the number of network layers increases, the experimental results will not get better, and network degradation will occur. Based on this problem, we propose a new framework based on Deep Residual Learning. Combine the ideas of Cox proportional hazards and Residual. And name it ResSurv. First, ResSurv is a feed-forward deep learning network stacked by multiple basic ResNet Blocks. In each ResNet Block, we add a Normalization Layer to prevent gradient disappearance and gradient explosion. Secondly, for the loss function of the neural network, we inherited the Cox proportional hazards methods, applied the semi-parametric of the CPH model to the neural network, combined with the partial likelihood model, established the loss function, and performed backpropagation and gradient update. Finally, we compared ResSurv networks of different depths and found that we can effectively extract high-dimensional features. Ablation experiments and comparative experiments prove that our model has reached SOTA(state of the art) in the field of deep learning, and our network can effectively extract deep information.
- Abstract(参考訳): 生存予測は癌予後解析の重要な分野である。
TCGAゲノミクスデータを用いて生存リスクを予測するモデルは、がんに関連する遺伝子を発見し、患者の特徴に基づく診断と治療の勧告を提供することができる。
Cox比例的ハザードに基づくディープラーニングモデルは、高スループットデータを扱う場合、しばしば過度に適合する。
さらに,ネットワーク層が増加するにつれて実験結果が向上せず,ネットワーク劣化が生じることが判明した。
そこで本研究では,Deep Residual Learningに基づく新しいフレームワークを提案する。
Cox比例的ハザードと残留性の概念を組み合わせる。
名前はResSurv。
まず、ResSurvはフィードフォワードのディープラーニングネットワークで、複数の基本的なResNetブロックがスタックされている。
各ResNetブロックに正規化層を追加し、勾配の消失と勾配の爆発を防止する。
次に、ニューラルネットワークの損失関数について、Cox比例ハザード法を継承し、CPHモデルの半パラメトリックをニューラルネットワークに適用し、部分確率モデルと組み合わせ、損失関数を確立し、バックプロパゲーションと勾配更新を行った。
最後に、異なる深さのResSurvネットワークを比較し、高次元の特徴を効果的に抽出できることを見出した。
アブレーション実験と比較実験により、ディープラーニングの分野において、我々のモデルがSOTA(state-of-the-art)に達したことが証明され、我々のネットワークは、ディープ情報を効果的に抽出できる。
関連論文リスト
- Improving Lung Cancer Diagnosis and Survival Prediction with Deep Learning and CT Imaging [12.276877277186284]
肺癌は主要ながん関連死亡例であり、早期診断と治療は患者の生存率の向上に不可欠である。
肺がんのリスクと肺のリスクとの間に得られるネットワークの神経畳み込みネットワークをCT実験に応用することを提案する。
以上の結果から, 肺がん発生リスクと肺がん発生リスクの予測に, ミニバッチド・ロスとバイナリ・クロスエントロピーが有効であったことが示唆された。
論文 参考訳(メタデータ) (2024-08-18T05:45:08Z) - SurvRNC: Learning Ordered Representations for Survival Prediction using Rank-N-Contrast [4.5445892770974154]
Survival Rank-N Contrast (SurvRNC) は、生存時間に基づいて順序付けられた表現を得るための正規化器としての損失関数である。
訓練にSurvRNC法を用いることで,異なる深層生存モデルにおいて高い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-03-15T18:00:11Z) - Lung Diseases Image Segmentation using Faster R-CNNs [4.394728504061752]
インドは2016年の世界の肺炎死者の約半数を占めており、発展途上国では肺疾患が乳児死亡の主な原因となっている。
本稿では,深層ネットワークにおけるトポロジ的課題を軽減するために,低密度ニューラルネットワーク構造を提案する。
論文 参考訳(メタデータ) (2023-09-10T16:37:03Z) - Deep Learning-based Fall Detection Algorithm Using Ensemble Model of
Coarse-fine CNN and GRU Networks [7.624051346741515]
本研究では,大小の畳み込みニューラルネットワークとゲートリカレントユニットを組み合わせたアンサンブルモデルを提案する。
提案したモデルは、それぞれ92.54%、96.13%、94.26%のリコール、精度、Fスコアを達成する。
論文 参考訳(メタデータ) (2023-04-13T08:30:46Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
ラベルフリップ雑音を持つ2層ReLU畳み込みニューラルネットワークを学習するためのアルゴリズム依存型リスクバウンダリを確立する。
緩やかな条件下では、勾配降下によってトレーニングされたニューラルネットワークは、ほぼゼロに近いトレーニング損失とベイズ最適試験リスクを達成できることを示す。
論文 参考訳(メタデータ) (2023-03-07T18:59:38Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Differentially private training of neural networks with Langevin
dynamics forcalibrated predictive uncertainty [58.730520380312676]
その結果,DP-SGD(差分偏差勾配勾配勾配勾配勾配)は,低校正・過信深層学習モデルが得られることがわかった。
これは、医療診断など、安全クリティカルな応用にとって深刻な問題である。
論文 参考訳(メタデータ) (2021-07-09T08:14:45Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
本稿では,2組の深層ReLUネットワークを用いたコントラスト型自己教師学習(SSL)手法を理解するための新しい枠組みを提案する。
種々の損失関数を持つSimCLRの各SGD更新において、各層の重みは共分散演算子によって更新されることを示す。
共分散演算子の役割と、そのようなプロセスでどのような特徴が学習されるかをさらに研究するために、我々は、階層的潜在木モデル(HLTM)を用いて、データ生成および増大過程をモデル化する。
論文 参考訳(メタデータ) (2020-10-01T17:51:49Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Learning Tumor Growth via Follow-Up Volume Prediction for Lung Nodules [15.069141581681016]
フォローアップは肺癌の肺結節管理において重要な役割を担っている。
結節の悪性度を予測するために畳み込みニューラルネットワーク(CNN)を用いた最近のディープラーニング研究は、臨床医にブラックボックス予測を提供するのみである。
我々は,高品質な視覚的外観を持つ肺結節の成長を予測し,正確な定量化を行うNodule Follow-Up Prediction Network (NoFoNet) という統合フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-24T17:18:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。