Incorporating Degradation Estimation in Light Field Spatial Super-Resolution
- URL: http://arxiv.org/abs/2405.07012v1
- Date: Sat, 11 May 2024 13:14:43 GMT
- Title: Incorporating Degradation Estimation in Light Field Spatial Super-Resolution
- Authors: Zeyu Xiao, Zhiwei Xiong,
- Abstract summary: We present LF-DEST, an effective blind Light Field SR method that incorporates explicit Degradation Estimation to handle various degradation types.
We conduct extensive experiments on benchmark datasets, demonstrating that LF-DEST achieves superior performance across a variety of degradation scenarios in light field SR.
- Score: 54.603510192725786
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in light field super-resolution (SR) have yielded impressive results. In practice, however, many existing methods are limited by assuming fixed degradation models, such as bicubic downsampling, which hinders their robustness in real-world scenarios with complex degradations. To address this limitation, we present LF-DEST, an effective blind Light Field SR method that incorporates explicit Degradation Estimation to handle various degradation types. LF-DEST consists of two primary components: degradation estimation and light field restoration. The former concurrently estimates blur kernels and noise maps from low-resolution degraded light fields, while the latter generates super-resolved light fields based on the estimated degradations. Notably, we introduce a modulated and selective fusion module that intelligently combines degradation representations with image information, allowing for effective handling of diverse degradation types. We conduct extensive experiments on benchmark datasets, demonstrating that LF-DEST achieves superior performance across a variety of degradation scenarios in light field SR.
Related papers
- Efficient Diffusion as Low Light Enhancer [63.789138528062225]
Reflectance-Aware Trajectory Refinement (RATR) is a simple yet effective module to refine the teacher trajectory using the reflectance component of images.
textbfReflectance-aware textbfDiffusion with textbfDistilled textbfTrajectory (textbfReDDiT) is an efficient and flexible distillation framework tailored for Low-Light Image Enhancement (LLIE)
arXiv Detail & Related papers (2024-10-16T08:07:18Z) - Degradation Oriented and Regularized Network for Blind Depth Super-Resolution [48.744290794713905]
In real-world scenarios, captured depth data often suffer from unconventional and unknown degradation due to sensor limitations and complex imaging environments.
We propose the Degradation Oriented and Regularized Network (DORNet), a novel framework designed to adaptively address unknown degradation in real-world scenes.
Our approach begins with the development of a self-supervised degradation learning strategy, which models the degradation representations of low-resolution depth data.
To facilitate effective RGB-D fusion, we further introduce a degradation-oriented feature transformation module that selectively propagates RGB content into the depth data based on the learned degradation priors.
arXiv Detail & Related papers (2024-10-15T14:53:07Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors.
We introduce a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods.
Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR.
arXiv Detail & Related papers (2024-09-25T16:15:21Z) - AGLLDiff: Guiding Diffusion Models Towards Unsupervised Training-free Real-world Low-light Image Enhancement [37.274077278901494]
We propose the Attribute Guidance Diffusion framework (AGLLDiff) for effective real-world LIE.
AGLLDiff shifts the paradigm and models the desired attributes, such as image exposure, structure and color of normal-light images.
Our approach outperforms the current leading unsupervised LIE methods across benchmarks in terms of distortion-based and perceptual-based metrics.
arXiv Detail & Related papers (2024-07-20T15:17:48Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
Image super-resolution (SR) aims to learn a mapping from low-resolution (LR) to high-resolution (HR) using paired HR-LR training images.
We present an efficient test-time adaptation framework for SR, named SRTTA, which is able to quickly adapt SR models to test domains with different/unknown degradation types.
arXiv Detail & Related papers (2023-10-29T13:58:57Z) - Toward Real-World Light Field Super-Resolution [39.90540075718412]
We introduce LytroZoom, the first real-world light field SR dataset capturing paired low- and high-resolution light fields of diverse indoor and outdoor scenes using a Lytro ILLUM camera.
We also propose the Omni-Frequency Projection Network (OFPNet), which decomposes the omni-frequency components and iteratively enhances them through frequency projection operations.
Experiments demonstrate that models trained on LytroZoom outperform those trained on synthetic datasets and are generalizable to diverse content and devices.
arXiv Detail & Related papers (2023-05-30T12:46:50Z) - Blind Super-Resolution for Remote Sensing Images via Conditional
Stochastic Normalizing Flows [14.882417028542855]
We propose a novel blind SR framework based on the normalizing flow (BlindSRSNF) to address the above problems.
BlindSRSNF learns the conditional probability distribution over the high-resolution image space given a low-resolution (LR) image by explicitly optimizing the variational bound on the likelihood.
We show that the proposed algorithm can obtain SR results with excellent visual perception quality on both simulated LR and real-world RSIs.
arXiv Detail & Related papers (2022-10-14T12:37:32Z) - Learning Generalizable Latent Representations for Novel Degradations in
Super Resolution [29.706191592443027]
We propose to learn a latent representation space for degradations, which can be generalized from handcrafted (base) degradations to novel degradations.
The obtained representations for a novel degradation in this latent space are then leveraged to generate degraded images consistent with the novel degradation.
We conduct extensive experiments on both synthetic and real-world datasets to validate the effectiveness and advantages of our method for blind super-resolution with novel degradations.
arXiv Detail & Related papers (2022-07-25T16:22:30Z) - Real-World Light Field Image Super-Resolution via Degradation Modulation [59.68036846233918]
We propose a simple yet effective method for real-world LF image SR.
A practical LF degradation model is developed to formulate the degradation process of real LF images.
A convolutional neural network is designed to incorporate the degradation prior to the SR process.
arXiv Detail & Related papers (2022-06-13T14:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.