Learning Flame Evolution Operator under Hybrid Darrieus Landau and Diffusive Thermal Instability
- URL: http://arxiv.org/abs/2405.07067v1
- Date: Sat, 11 May 2024 18:31:13 GMT
- Title: Learning Flame Evolution Operator under Hybrid Darrieus Landau and Diffusive Thermal Instability
- Authors: Rixin Yu, Erdzan Hodzic, Karl-Johan Nogenmyr,
- Abstract summary: This paper explores the application of novel operator learning methodologies to unravel the dynamics of flame instability.
Training datasets encompass a wide range of parameter configurations, enabling the learning of parametric solution advancement operators.
Results demonstrate the efficacy of these methods in accurately predicting short-term and long-term flame evolution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in the integration of artificial intelligence (AI) and machine learning (ML) with physical sciences have led to significant progress in addressing complex phenomena governed by nonlinear partial differential equations (PDE). This paper explores the application of novel operator learning methodologies to unravel the intricate dynamics of flame instability, particularly focusing on hybrid instabilities arising from the coexistence of Darrieus-Landau (DL) and Diffusive-Thermal (DT) mechanisms. Training datasets encompass a wide range of parameter configurations, enabling the learning of parametric solution advancement operators using techniques such as parametric Fourier Neural Operator (pFNO), and parametric convolutional neural networks (pCNN). Results demonstrate the efficacy of these methods in accurately predicting short-term and long-term flame evolution across diverse parameter regimes, capturing the characteristic behaviors of pure and blended instabilities. Comparative analyses reveal pFNO as the most accurate model for learning short-term solutions, while all models exhibit robust performance in capturing the nuanced dynamics of flame evolution. This research contributes to the development of robust modeling frameworks for understanding and controlling complex physical processes governed by nonlinear PDE.
Related papers
- Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
This study introduces a universal learning strategy for neural network PDEs, named Systematic Model Augmentation for Robust Training.
By focusing on challenging and improving the model's weaknesses, SMART reduces generalization error during training under data-scarce conditions.
arXiv Detail & Related papers (2024-09-04T04:18:25Z) - Parametric Learning of Time-Advancement Operators for Unstable Flame
Evolution [0.0]
This study investigates the application of machine learning to learn time-advancement operators for parametric partial differential equations (PDEs)
Our focus is on extending existing operator learning methods to handle additional inputs representing PDE parameters.
The goal is to create a unified learning approach that accurately predicts short-term solutions and provides robust long-term statistics.
arXiv Detail & Related papers (2024-02-14T18:12:42Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
We introduce a novel method, DiffHybrid-UQ, for effective and efficient uncertainty propagation and estimation in hybrid neural differentiable models.
Specifically, our approach effectively discerns and quantifies both aleatoric uncertainties, arising from data noise, and epistemic uncertainties, resulting from model-form discrepancies and data sparsity.
arXiv Detail & Related papers (2023-12-30T07:40:47Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
We develop a novel and versatile methodology of unified neural partial delay differential equations.
We augment existing/low-fidelity dynamical models directly in their partial differential equation (PDE) forms with both Markovian and non-Markovian neural network (NN) closure parameterizations.
We demonstrate the new generalized neural closure models (gnCMs) framework using four sets of experiments based on advecting nonlinear waves, shocks, and ocean acidification models.
arXiv Detail & Related papers (2023-01-15T21:57:43Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
This work presents a data-driven, non-intrusive framework which combines ROM construction with reduced dynamics identification.
The proposed approach leverages autoencoder neural networks with parametric sparse identification of nonlinear dynamics (SINDy) to construct a low-dimensional dynamical model.
These aim at tracking the evolution of periodic steady-state responses as functions of system parameters, avoiding the computation of the transient phase, and allowing to detect instabilities and bifurcations.
arXiv Detail & Related papers (2022-11-13T01:57:18Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.