論文の概要: Catastrophe Insurance: An Adaptive Robust Optimization Approach
- arxiv url: http://arxiv.org/abs/2405.07068v1
- Date: Sat, 11 May 2024 18:35:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 18:32:45.683390
- Title: Catastrophe Insurance: An Adaptive Robust Optimization Approach
- Title(参考訳): 災害保険 : 適応的ロバスト最適化アプローチ
- Authors: Dimitris Bertsimas, Cynthia Zeng,
- Abstract要約: この研究は、災害保険料の計算に適した新しい適応ロバスト最適化フレームワークを導入している。
私たちの知る限り、AROアプローチが災害保険価格に適用されるのは初めてです。
米国の洪水保険データをケーススタディとして、最適化モデルは損失をカバーし余剰を発生させる効果を示す。
- 参考スコア(独自算出の注目度): 5.877778007271621
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The escalating frequency and severity of natural disasters, exacerbated by climate change, underscore the critical role of insurance in facilitating recovery and promoting investments in risk reduction. This work introduces a novel Adaptive Robust Optimization (ARO) framework tailored for the calculation of catastrophe insurance premiums, with a case study applied to the United States National Flood Insurance Program (NFIP). To the best of our knowledge, it is the first time an ARO approach has been applied to for disaster insurance pricing. Our methodology is designed to protect against both historical and emerging risks, the latter predicted by machine learning models, thus directly incorporating amplified risks induced by climate change. Using the US flood insurance data as a case study, optimization models demonstrate effectiveness in covering losses and produce surpluses, with a smooth balance transition through parameter fine-tuning. Among tested optimization models, results show ARO models with conservative parameter values achieving low number of insolvent states with the least insurance premium charged. Overall, optimization frameworks offer versatility and generalizability, making it adaptable to a variety of natural disaster scenarios, such as wildfires, droughts, etc. This work not only advances the field of insurance premium modeling but also serves as a vital tool for policymakers and stakeholders in building resilience to the growing risks of natural catastrophes.
- Abstract(参考訳): 気候変動によって悪化する自然災害の頻度と深刻度は、回復の促進とリスク低減への投資促進における保険の重要性を浮き彫りにしている。
本研究は, 災害保険料の計算に適した新しい適応ロバスト最適化(ARO)フレームワークを導入し, 全米洪水保険プログラム(NFIP)の事例研究を行った。
我々の知る限り、AROアプローチが災害保険価格に適用されるのは今回が初めてです。
我々の手法は、機械学習モデルによって予測される歴史的リスクと新興リスクの両方から保護され、気候変動によって引き起こされる増幅リスクを直接組み込むように設計されている。
米国の洪水保険データをケーススタディとして、最適化モデルは損失をカバーし余剰を発生させる効果を示し、パラメータの微調整を通じてスムーズなバランス遷移を行う。
評価された最適化モデルのうち、AROモデルは、最低保険料が課せられる未解決状態の数が少なく、保守的なパラメータ値を持つ。
全体として、最適化フレームワークは汎用性と一般化性を提供し、山火事や干ばつなど、さまざまな自然災害シナリオに適応できるようにする。
この作業は、保険料のモデリングの分野を前進させるだけでなく、自然災害のリスクの増大に対するレジリエンスを構築するための政策立案者や利害関係者にとって重要なツールとしても機能する。
関連論文リスト
- Domain Generalization without Excess Empirical Risk [83.26052467843725]
一般的なアプローチは、一般化を捉え、ペナルティと共同で経験的リスクを最小化するために、データ駆動の代理ペナルティを設計することである。
我々は、このレシピの重大な失敗モードは、共同最適化における誤ったペナルティや難しさによる過度なリスクであると主張している。
我々は,この問題を解消するアプローチを提案し,経験的リスクと刑罰を同時に最小化する代わりに,経験的リスクの最適性の制約の下でのペナルティを最小化する。
論文 参考訳(メタデータ) (2023-08-30T08:46:46Z) - SafeAR: Safe Algorithmic Recourse by Risk-Aware Policies [2.291948092032746]
本稿では,コストの変動を考慮したレコメンデーションポリシーの計算手法を提案する。
我々は,既存のデシダラタが高コストのリスクを捕捉できないことを示す。
論文 参考訳(メタデータ) (2023-08-23T18:12:11Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
本稿では,安全な配置を理論的に保証する新たなリスク認識型対実学習ランク法を提案する。
提案手法の有効性を実験的に検証し,データが少ない場合の動作不良の早期回避に有効であることを示す。
論文 参考訳(メタデータ) (2023-04-26T15:54:23Z) - Prediction of Auto Insurance Risk Based on t-SNE Dimensionality
Reduction [0.0]
ニューラルネットワークと次元還元技術t-SNEを組み合わせたフレームワークを開発した。
得られた結果は、実際の保険データに基づいて、高リスクと低リスクの政策保持者との明確な対比を明らかにした。
論文 参考訳(メタデータ) (2022-12-19T11:50:18Z) - Learning Inter-Annual Flood Loss Risk Models From Historical Flood
Insurance Claims and Extreme Rainfall Data [0.0]
洪水は最も壊滅的な自然災害の1つであり、実質的な経済的損失の原因となっている。
本研究は,国立洪水保険プログラムデータセット上に構築されたレジストレーターの予測能力を評価する。
論文 参考訳(メタデータ) (2022-12-15T19:23:02Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
リスク逆強化学習(RL)では、リターンのリスク測定を最適化することが目標である。
特定の条件下では、これは必然的に局所最適障壁につながることを証明し、それを回避するためのソフトリスク機構を提案する。
迷路ナビゲーション,自律運転,資源配分ベンチマークにおいて,リスク回避の改善を示す。
論文 参考訳(メタデータ) (2022-05-10T19:40:52Z) - Holdouts set for predictive model updating [0.9749560288448114]
リスクスコアの更新は、バイアスのあるリスク見積につながる可能性がある。
リスクスコアによって導かれる介入を受けない集団のサブセットであるホールドアウトセット(holdout set)の使用を提案する。
このアプローチによって、N$の人口に対して、総コストが$Oleft(N2/3right)$で成長できることが証明され、一般的な状況では競合する代替手段はない、と論じる。
論文 参考訳(メタデータ) (2022-02-13T18:04:00Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。