Catastrophe Insurance: An Adaptive Robust Optimization Approach
- URL: http://arxiv.org/abs/2405.07068v1
- Date: Sat, 11 May 2024 18:35:54 GMT
- Title: Catastrophe Insurance: An Adaptive Robust Optimization Approach
- Authors: Dimitris Bertsimas, Cynthia Zeng,
- Abstract summary: This work introduces a novel Adaptive Robust Optimization framework tailored for the calculation of catastrophe insurance premiums.
To the best of our knowledge, it is the first time an ARO approach has been applied to disaster insurance pricing.
Using the US flood insurance data as a case study, optimization models demonstrate effectiveness in covering losses and produce surpluses.
- Score: 5.877778007271621
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The escalating frequency and severity of natural disasters, exacerbated by climate change, underscore the critical role of insurance in facilitating recovery and promoting investments in risk reduction. This work introduces a novel Adaptive Robust Optimization (ARO) framework tailored for the calculation of catastrophe insurance premiums, with a case study applied to the United States National Flood Insurance Program (NFIP). To the best of our knowledge, it is the first time an ARO approach has been applied to for disaster insurance pricing. Our methodology is designed to protect against both historical and emerging risks, the latter predicted by machine learning models, thus directly incorporating amplified risks induced by climate change. Using the US flood insurance data as a case study, optimization models demonstrate effectiveness in covering losses and produce surpluses, with a smooth balance transition through parameter fine-tuning. Among tested optimization models, results show ARO models with conservative parameter values achieving low number of insolvent states with the least insurance premium charged. Overall, optimization frameworks offer versatility and generalizability, making it adaptable to a variety of natural disaster scenarios, such as wildfires, droughts, etc. This work not only advances the field of insurance premium modeling but also serves as a vital tool for policymakers and stakeholders in building resilience to the growing risks of natural catastrophes.
Related papers
- A Hybrid Framework for Reinsurance Optimization: Integrating Generative Models and Reinforcement Learning [0.0]
Reinsurance optimization is critical for insurers to manage risk exposure, ensure financial stability, and maintain solvency.
Traditional approaches often struggle with dynamic claim distributions, high-dimensional constraints, and evolving market conditions.
This paper introduces a novel hybrid framework that integrates generative models and reinforcement learning.
arXiv Detail & Related papers (2025-01-11T02:02:32Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - SafeAR: Safe Algorithmic Recourse by Risk-Aware Policies [2.291948092032746]
We present a method to compute recourse policies that consider variability in cost.
We show how existing recourse desiderata can fail to capture the risk of higher costs.
arXiv Detail & Related papers (2023-08-23T18:12:11Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
We introduce a novel risk-aware Counterfactual Learning To Rank method with theoretical guarantees for safe deployment.
Our experimental results demonstrate the efficacy of our proposed method, which is effective at avoiding initial periods of bad performance when little data is available.
arXiv Detail & Related papers (2023-04-26T15:54:23Z) - Prediction of Auto Insurance Risk Based on t-SNE Dimensionality
Reduction [0.0]
We develop a framework based on a combination of a neural network together with a dimensionality reduction technique t-SNE.
The obtained results, which are based on real insurance data, reveal a clear contrast between the high and low risk policy holders.
arXiv Detail & Related papers (2022-12-19T11:50:18Z) - Learning Inter-Annual Flood Loss Risk Models From Historical Flood
Insurance Claims and Extreme Rainfall Data [0.0]
Flooding is one of the most disastrous natural hazards, responsible for substantial economic losses.
This research assesses the predictive capability of regressors constructed on the National Flood Insurance Program dataset.
arXiv Detail & Related papers (2022-12-15T19:23:02Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous.
We propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments.
We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk.
arXiv Detail & Related papers (2020-08-15T01:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.