Enhanced Online Test-time Adaptation with Feature-Weight Cosine Alignment
- URL: http://arxiv.org/abs/2405.07171v1
- Date: Sun, 12 May 2024 05:57:37 GMT
- Title: Enhanced Online Test-time Adaptation with Feature-Weight Cosine Alignment
- Authors: WeiQin Chuah, Ruwan Tennakoon, Alireza Bab-Hadiashar,
- Abstract summary: Online Test-Time Adaptation (OTTA) has emerged as an effective strategy to handle distributional shifts.
This paper introduces a novel cosine alignment optimization approach with a dual-objective loss function.
Our method outperforms state-of-the-art techniques and sets a new benchmark in multiple datasets.
- Score: 7.991720491452191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online Test-Time Adaptation (OTTA) has emerged as an effective strategy to handle distributional shifts, allowing on-the-fly adaptation of pre-trained models to new target domains during inference, without the need for source data. We uncovered that the widely studied entropy minimization (EM) method for OTTA, suffers from noisy gradients due to ambiguity near decision boundaries and incorrect low-entropy predictions. To overcome these limitations, this paper introduces a novel cosine alignment optimization approach with a dual-objective loss function that refines the precision of class predictions and adaptability to novel domains. Specifically, our method optimizes the cosine similarity between feature vectors and class weight vectors, enhancing the precision of class predictions and the model's adaptability to novel domains. Our method outperforms state-of-the-art techniques and sets a new benchmark in multiple datasets, including CIFAR-10-C, CIFAR-100-C, ImageNet-C, Office-Home, and DomainNet datasets, demonstrating high accuracy and robustness against diverse corruptions and domain shifts.
Related papers
- A constrained optimization approach to improve robustness of neural networks [1.2338729811609355]
We present a novel nonlinear programming-based approach to fine-tune pre-trained neural networks to improve robustness against adversarial attacks while maintaining accuracy on clean data.
arXiv Detail & Related papers (2024-09-18T18:37:14Z) - Adaptive Weighted Co-Learning for Cross-Domain Few-Shot Learning [23.615250207134004]
Cross-domain few-shot learning (CDFSL) induces a very challenging adaptation problem.
We propose a simple Adaptive Weighted Co-Learning (AWCoL) method to address the CDFSL challenge.
Comprehensive experiments are conducted on multiple benchmark datasets and the empirical results demonstrate that the proposed method produces state-of-the-art CDFSL performance.
arXiv Detail & Related papers (2023-12-06T22:09:52Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
We propose a new clustering method based on Variational Bayesian inference, further improved by Adaptive Dimension Reduction.
Our proposed method significantly improves accuracy in the realistic unbalanced transductive setting on various Few-Shot benchmarks.
arXiv Detail & Related papers (2022-09-18T10:29:02Z) - Improving Test-Time Adaptation via Shift-agnostic Weight Regularization
and Nearest Source Prototypes [18.140619966865955]
We propose a novel test-time adaptation strategy that adjusts the model pre-trained on the source domain using only unlabeled online data from the target domain.
We show that our method exhibits state-of-the-art performance on various standard benchmarks and even outperforms its supervised counterpart.
arXiv Detail & Related papers (2022-07-24T10:17:05Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z) - Towards Trustworthy Predictions from Deep Neural Networks with Fast
Adversarial Calibration [2.8935588665357077]
We propose an efficient yet general modelling approach for obtaining well-calibrated, trustworthy probabilities for samples obtained after a domain shift.
We introduce a new training strategy combining an entropy-encouraging loss term with an adversarial calibration loss term and demonstrate that this results in well-calibrated and technically trustworthy predictions.
arXiv Detail & Related papers (2020-12-20T13:39:29Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
We propose a reinforcement learning based selective pseudo-labeling method for semi-supervised domain adaptation.
We develop a deep Q-learning model to select both accurate and representative pseudo-labeled instances.
Our proposed method is evaluated on several benchmark datasets for SSDA, and demonstrates superior performance to all the comparison methods.
arXiv Detail & Related papers (2020-12-07T03:37:38Z) - Robust Optimal Transport with Applications in Generative Modeling and
Domain Adaptation [120.69747175899421]
Optimal Transport (OT) distances such as Wasserstein have been used in several areas such as GANs and domain adaptation.
We propose a computationally-efficient dual form of the robust OT optimization that is amenable to modern deep learning applications.
Our approach can train state-of-the-art GAN models on noisy datasets corrupted with outlier distributions.
arXiv Detail & Related papers (2020-10-12T17:13:40Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.
In this work, we consider the problem setting of domain generalization, where the training data are structured into domains and there may be multiple test time shifts.
We introduce the framework of adaptive risk minimization (ARM), in which models are directly optimized for effective adaptation to shift by learning to adapt on the training domains.
arXiv Detail & Related papers (2020-07-06T17:59:30Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.