Gradient Correction in Federated Learning with Adaptive Optimization
- URL: http://arxiv.org/abs/2502.02727v3
- Date: Sun, 18 May 2025 02:48:18 GMT
- Title: Gradient Correction in Federated Learning with Adaptive Optimization
- Authors: Evan Chen, Shiqiang Wang, Jianing Zhang, Dong-Jun Han, Chaoyue Liu, Christopher Brinton,
- Abstract summary: We propose tt FAdamGC, the first algorithm to integrate client-drift compensation into adaptive optimization.<n>We show that tt FAdamGC consistently outperforms existing methods in total communication and cost across varying levels of data.
- Score: 19.93709245766609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In federated learning (FL), model training performance is strongly impacted by data heterogeneity across clients. Client-drift compensation methods have recently emerged as a solution to this issue, introducing correction terms into local model updates. To date, these methods have only been considered under stochastic gradient descent (SGD)-based model training, while modern FL frameworks also employ adaptive optimizers (e.g., Adam) for improved convergence. However, due to the complex interplay between first and second moments found in most adaptive optimization methods, naively injecting correction terms can lead to performance degradation in heterogeneous settings. In this work, we propose {\tt FAdamGC}, the first algorithm to integrate drift compensation into adaptive federated optimization. The key idea of {\tt FAdamGC} is injecting a pre-estimation correction term that aligns with the moment structure of adaptive methods. We provide a rigorous convergence analysis of our algorithm under non-convex settings, showing that {\tt FAdamGC} results in better rate and milder assumptions than naively porting SGD-based correction algorithms into adaptive optimizers. Our experimental results demonstrate that {\tt FAdamGC} consistently outperform existing methods in total communication and computation cost across varying levels of data heterogeneity, showing the efficacy of correcting gradient information in federated adaptive optimization.
Related papers
- TACO: Tackling Over-correction in Federated Learning with Tailored Adaptive Correction [24.266135702821334]
Non-independent and identically distributed (Non-IID) data across edge clients have long posed significant challenges to federated learning (FL) training.
We propose TACO, a novel algorithm that addresses the non-IID nature of clients' data by implementing fine-grained, client-specific gradient correction and model aggregation.
To enhance the training efficiency, TACO deploys a lightweight model correction and tailored aggregation approach that requires minimum overhead and no extra information beyond the synchronized model parameters.
arXiv Detail & Related papers (2025-04-24T13:16:21Z) - Architect Your Landscape Approach (AYLA) for Optimizations in Deep Learning [0.0]
Gradient Descent (DSG) and its variants, such as ADAM, are foundational to deep learning optimization.
This paper introduces AYLA, a novel optimization technique that enhances adaptability and efficiency rates.
arXiv Detail & Related papers (2025-04-02T16:31:39Z) - Feasible Learning [78.6167929413604]
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample.<n>Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
arXiv Detail & Related papers (2025-01-24T20:39:38Z) - Revisiting the Initial Steps in Adaptive Gradient Descent Optimization [6.468625143772815]
Adaptive gradient optimization methods, such as Adam, are prevalent in training deep neural networks across diverse machine learning tasks.<n>These methods often suffer from suboptimal generalization compared to descent gradient (SGD) and exhibit instability.<n>We introduce simple yet effective solutions: initializing the second-order moment estimation with non-zero values.
arXiv Detail & Related papers (2024-12-03T04:28:14Z) - Aiding Global Convergence in Federated Learning via Local Perturbation and Mutual Similarity Information [6.767885381740953]
Federated learning has emerged as a distributed optimization paradigm.
We propose a novel modified framework wherein each client locally performs a perturbed gradient step.
We show that our algorithm speeds convergence up to a margin of 30 global rounds compared with FedAvg.
arXiv Detail & Related papers (2024-10-07T23:14:05Z) - FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
Federated learning (FL) has emerged as a widely adopted training paradigm for privacy-preserving machine learning.
This paper introduces federated adaptive asynchronous optimization, named FADAS, a novel method that incorporates asynchronous updates into adaptive federated optimization with provable guarantees.
We rigorously establish the convergence rate of the proposed algorithms and empirical results demonstrate the superior performance of FADAS over other asynchronous FL baselines.
arXiv Detail & Related papers (2024-07-25T20:02:57Z) - Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
This research introduces a novel adaptation method utilizing the UniPELT framework as a base.
Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters.
arXiv Detail & Related papers (2024-05-09T01:40:38Z) - Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
This paper adopts a novel approach to deep learning optimization, focusing on gradient descent (SGD) and its variants.
We show that SGD and its variants demonstrate performance on par with flat-minimas like SAM, albeit with half the gradient evaluations.
Our study uncovers several key findings regarding the relationship between training loss and hold-out accuracy, as well as the comparable performance of SGD and noise-enabled variants.
arXiv Detail & Related papers (2024-03-01T14:55:22Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Efficient Federated Learning via Local Adaptive Amended Optimizer with
Linear Speedup [90.26270347459915]
We propose a novel momentum-based algorithm via utilizing the global descent locally adaptive.
textitLADA could greatly reduce the communication rounds and achieves higher accuracy than several baselines.
arXiv Detail & Related papers (2023-07-30T14:53:21Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Accelerated Federated Learning with Decoupled Adaptive Optimization [53.230515878096426]
federated learning (FL) framework enables clients to collaboratively learn a shared model while keeping privacy of training data on clients.
Recently, many iterations efforts have been made to generalize centralized adaptive optimization methods, such as SGDM, Adam, AdaGrad, etc., to federated settings.
This work aims to develop novel adaptive optimization methods for FL from the perspective of dynamics of ordinary differential equations (ODEs)
arXiv Detail & Related papers (2022-07-14T22:46:43Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
It is desired to design a universal framework for adaptive algorithms to solve general problems.
In particular, our novel framework provides adaptive methods under non convergence support for setting.
arXiv Detail & Related papers (2021-06-15T15:16:28Z) - BAMSProd: A Step towards Generalizing the Adaptive Optimization Methods
to Deep Binary Model [34.093978443640616]
Recent methods have significantly reduced the performance of Binary Neural Networks (BNNs)
guaranteeing the effective and efficient training of BNNs is an unsolved problem.
We propose a BAMSProd algorithm with a key observation that the convergence property of optimizing deep binary model is strongly related to the quantization errors.
arXiv Detail & Related papers (2020-09-29T06:12:32Z) - MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of
Gradients [112.00379151834242]
We propose adaptive learning rate principle, in which the running mean of squared gradient in Adam is replaced by a weighted mean, with weights chosen to maximize the estimated variance each coordinate.
This results in faster adaptation, which leads more desirable empirical convergence behaviors.
arXiv Detail & Related papers (2020-06-21T21:47:43Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Adaptive Federated Optimization [43.78438670284309]
In Federated learning, a large number of clients coordinate with a central server to learn a model without sharing their own data.
adaptive optimization methods have notable success in combating such issues.
We show that the use adaptives can significantly improve the performance of federated learning.
arXiv Detail & Related papers (2020-02-29T16:37:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.