論文の概要: Enhancing Decision-Making in Optimization through LLM-Assisted Inference: A Neural Networks Perspective
- arxiv url: http://arxiv.org/abs/2405.07212v1
- Date: Sun, 12 May 2024 08:22:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 17:47:28.586313
- Title: Enhancing Decision-Making in Optimization through LLM-Assisted Inference: A Neural Networks Perspective
- Title(参考訳): LLM支援推論による最適化における決定処理の強化:ニューラルネットワークの視点から
- Authors: Gaurav Singh, Kavitesh Kumar Bali,
- Abstract要約: 本稿では,生成型AI(GenAI)と進化型アルゴリズム(EA)のシームレスな統合について検討する。
大規模言語モデル(LLM)の変換的役割に着目し,LLM支援推論による意思決定プロセスの自動化と向上の可能性について検討した。
- 参考スコア(独自算出の注目度): 1.0420394952839245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the seamless integration of Generative AI (GenAI) and Evolutionary Algorithms (EAs) within the domain of large-scale multi-objective optimization. Focusing on the transformative role of Large Language Models (LLMs), our study investigates the potential of LLM-Assisted Inference to automate and enhance decision-making processes. Specifically, we highlight its effectiveness in illuminating key decision variables in evolutionarily optimized solutions while articulating contextual trade-offs. Tailored to address the challenges inherent in inferring complex multi-objective optimization solutions at scale, our approach emphasizes the adaptive nature of LLMs, allowing them to provide nuanced explanations and align their language with diverse stakeholder expertise levels and domain preferences. Empirical studies underscore the practical applicability and impact of LLM-Assisted Inference in real-world decision-making scenarios.
- Abstract(参考訳): 本稿では,大規模多目的最適化分野におけるジェネレーティブAI(GenAI)と進化的アルゴリズム(EA)のシームレスな統合について検討する。
大規模言語モデル(LLM)の変換的役割に着目し,LLM支援推論による意思決定プロセスの自動化と向上の可能性について検討した。
具体的には、進化的に最適化されたソリューションにおいて、文脈的トレードオフを明確に表現しながら、重要な決定変数を照らし出す効果を強調した。
複雑な多目的最適化ソリューションを大規模に見積もることに固有の課題に対処するために,我々のアプローチはLLMの適応性を強調し,曖昧な説明を提供し,さまざまな利害関係者の専門知識レベルとドメインの嗜好とを整合させる。
実世界の意思決定シナリオにおける LLM-Assisted Inference の実践的適用性と影響について実証的研究を行った。
関連論文リスト
- Optimal Decision Making Through Scenario Simulations Using Large Language Models [0.0]
大規模言語モデル(LLM)は、複雑な問題へのアプローチと解決の方法を変えました。
本稿では,この能力ギャップを橋渡しする革新的な手法を提案する。
LLMがユーザから複数のオプションとそれぞれのパラメータをリクエストできるようにすることで、動的フレームワークを導入しています。
この関数は提供された選択肢を分析し、潜在的な結果をシミュレートし、最も有利な解を決定するように設計されている。
論文 参考訳(メタデータ) (2024-07-09T01:23:09Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
強化学習(RL)を用いた視覚言語モデル(VLM)を微調整するアルゴリズムフレームワークを提案する。
我々のフレームワークはタスク記述を提供し、次にVLMにチェーン・オブ・シント(CoT)推論を生成するよう促す。
提案手法は,VLMエージェントの様々なタスクにおける意思決定能力を向上させる。
論文 参考訳(メタデータ) (2024-05-16T17:50:19Z) - When Large Language Model Meets Optimization [7.822833805991351]
大規模言語モデル(LLM)は、インテリジェントなモデリングと最適化における戦略的意思決定を容易にする。
本稿では,LLMと最適化アルゴリズムの組み合わせの進展と可能性について概説する。
論文 参考訳(メタデータ) (2024-05-16T13:54:37Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - From Large Language Models and Optimization to Decision Optimization
CoPilot: A Research Manifesto [2.4981381729038743]
我々は,大規模言語モデルと最適化の交点において,決定最適化CoPilot(DOCP)を作成するための研究を提案する。
DOCPは意思決定者を支援するために設計されたAIツールで、自然言語で対話してビジネスの問題を把握し、その後、対応する最適化モデルを定式化し、解決する。
a) LLMは、既にDOCPに関連する実質的な新しい能力を提供しており、b.主要な研究課題に対処する必要がある。
論文 参考訳(メタデータ) (2024-02-26T03:10:11Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
エージェントベースのモデル(ABM)は、仮説的な解決策やポリシーの提案と検証に不可欠なパラダイムである。
大きな言語モデル(LLM)は、ドメイン間の知識とプログラミング能力をカプセル化することで、このプロセスの難しさを軽減できる可能性がある。
SAGEは、ターゲット問題に対する自動モデリングおよびソリューション生成のために設計された、汎用的なソリューション指向のABM生成フレームワークである。
論文 参考訳(メタデータ) (2024-02-04T07:59:06Z) - K-Level Reasoning with Large Language Models [80.13817747270029]
急速に発展する環境における意思決定のための大規模言語モデル(LLM)の動的推論機能について検討する。
実世界の動的意思決定の複雑さを反映した2つのゲーム理論に基づくパイロットチャレンジを導入する。
これらの課題は明確に定義されており、LLMの動的推論能力の明確で制御可能で正確な評価を可能にする。
論文 参考訳(メタデータ) (2024-02-02T16:07:05Z) - On Leveraging Large Language Models for Enhancing Entity Resolution [11.668263762236343]
本稿では,大規模言語モデル(LLM)を実体分解プロセスで効率的に活用するための戦略を紹介する。
当社のアプローチは、予算に制限された消費を維持しながら、最も効果的なマッチング質問を最適に選択します。
エントロピーを指標として提案手法の有効性を評価し,提案手法の有効性と有効性について実験的に検証した。
論文 参考訳(メタデータ) (2024-01-07T09:06:58Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。