論文の概要: Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration
- arxiv url: http://arxiv.org/abs/2310.00280v3
- Date: Wed, 21 Aug 2024 05:11:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 23:15:31.700705
- Title: Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration
- Title(参考訳): Corex: 複数モデルコラボレーションによる複雑な推論の境界を押し上げる
- Authors: Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu, Xipeng Qiu, Lingpeng Kong,
- Abstract要約: Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
- 参考スコア(独自算出の注目度): 83.4031923134958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are evolving at an unprecedented pace and have exhibited considerable capability in the realm of natural language processing (NLP) with world knowledge. Benefiting from ultra-large-scale training corpora, a single LLM can manage typical NLP tasks competently. However, its performance in executing reasoning tasks is still confined by the limitations of its internal representations. To push this boundary further, we introduce Corex in this paper, a suite of novel general-purpose strategies that transform LLMs into autonomous agents pioneering multi-model collaborations for complex task-solving. Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes, which collectively work towards enhancing the factuality, faithfulness, and reliability of the reasoning process. These paradigms foster task-agnostic approaches that enable LLMs to ''think outside the box,'' thereby overcoming hallucinations and providing better solutions. Through extensive experiments across four different types of reasoning tasks, we demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods. Further results and in-depth analysis demonstrate the cost-effectiveness of our method, facilitating collaboration among different LLMs and promoting annotation efficiency.
- Abstract(参考訳): 大規模言語モデル(LLM)は前例のないペースで進化しており、世界的知識を持つ自然言語処理(NLP)の領域でかなりの能力を発揮している。
超大規模トレーニングコーパスの恩恵を受け、単一のLCMは典型的なNLPタスクを能動的に管理できる。
しかしながら、推論タスクの実行時のパフォーマンスは、内部表現の制限によって制限されている。
この境界をさらに推し進めるために、複雑なタスク解決のための多モデルコラボレーションを開拓する自律エージェントにLSMを変換する新しい汎用戦略スイートであるCorexを紹介します。
人間の行動にインスパイアされたコークスは、議論、レビュー、検索モードなどの多様なコラボレーションパラダイムによって構成され、事実性、忠実性、推論プロセスの信頼性の向上に一括して取り組んでいる。
これらのパラダイムは、LCMが「箱の外を考えて」、幻覚を克服し、より良いソリューションを提供できるようなタスクに依存しないアプローチを促進する。
4種類の推論タスクにまたがる広範囲な実験を通して,複数のLDMを協調して協調作業を行うことは,既存の手法に比べてかなり優れた性能を示すことを示した。
さらなる結果と詳細な分析により,提案手法の費用対効果が示され,LLM間の協調が促進され,アノテーション効率が向上した。
関連論文リスト
- BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
我々は,Bloomの分類にインスパイアされた新しいプロンプト技術であるBloomWiseを導入し,Large Language Models(LLMs)の性能を向上させる。
より洗練された認知スキルを身につける必要性に関する決定は、LLMによる自己評価に基づいている。
4つの一般的な算数推論データセットの広範な実験において,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-05T09:27:52Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Merge, Ensemble, and Cooperate! A Survey on Collaborative Strategies in the Era of Large Language Models [32.336273322481276]
多様な機能にもかかわらず、Large Language Models (LLM) は様々な長所と短所を示す。
これらの課題に対処するため、最近の研究はLLMの協調戦略を探求している。
本稿では,この新たな研究領域の概要を概観し,そのようなコラボレーションの背景にあるモチベーションを明らかにする。
論文 参考訳(メタデータ) (2024-07-08T16:29:08Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
強化学習(RL)を用いた視覚言語モデル(VLM)を微調整するアルゴリズムフレームワークを提案する。
我々のフレームワークはタスク記述を提供し、次にVLMにチェーン・オブ・シント(CoT)推論を生成するよう促す。
提案手法は,VLMエージェントの様々なタスクにおける意思決定能力を向上させる。
論文 参考訳(メタデータ) (2024-05-16T17:50:19Z) - Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning [14.635361844362794]
Smurfs'は、大規模言語モデルの応用に革命をもたらすために設計された最先端のマルチエージェントフレームワークである。
Smurfは、余分なコストなしで複雑なタスクを解くモデルの能力を高めることができる。
論文 参考訳(メタデータ) (2024-05-09T17:49:04Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - CoF-CoT: Enhancing Large Language Models with Coarse-to-Fine
Chain-of-Thought Prompting for Multi-domain NLU Tasks [46.862929778121675]
Chain-of-Thoughtプロンプトは推論タスクで人気があるが、自然言語理解(NLU)への応用は未検討である。
大規模言語モデル (LLMs) の多段階的推論により動機付け, CoF-CoT (Coarse-to-Fine Chain-of-Thought) アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-23T06:54:51Z) - Theory of Mind for Multi-Agent Collaboration via Large Language Models [5.2767999863286645]
本研究では,多エージェント協調型テキストゲームにおけるLarge Language Models (LLMs) ベースのエージェントを,理論オブマインド (ToM) 推論タスクを用いて評価する。
LLMをベースとしたエージェント間の創発的協調行動と高次マインド理論の実証を行った。
論文 参考訳(メタデータ) (2023-10-16T07:51:19Z) - Examining Inter-Consistency of Large Language Models Collaboration: An
In-depth Analysis via Debate [41.949869545423375]
大きな言語モデル(LLM)は、様々なアプリケーションで印象的な機能を示しているが、それでも様々な矛盾問題に直面している。
LLMが効果的に協力して共有目標のコンセンサスを達成するためには,コモンセンス推論に焦点をあてる。
我々の研究は,LLM間の一貫性の理解に寄与し,今後のコラボレーション手法開発の基礎を築いた。
論文 参考訳(メタデータ) (2023-05-19T11:15:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。