論文の概要: A Supervised Information Enhanced Multi-Granularity Contrastive Learning Framework for EEG Based Emotion Recognition
- arxiv url: http://arxiv.org/abs/2405.07260v1
- Date: Sun, 12 May 2024 11:51:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 17:30:59.185634
- Title: A Supervised Information Enhanced Multi-Granularity Contrastive Learning Framework for EEG Based Emotion Recognition
- Title(参考訳): 脳波を用いた感情認識のためのマルチグラニュラリティコントラスト学習フレームワークの改訂
- Authors: Xiang Li, Jian Song, Zhigang Zhao, Chunxiao Wang, Dawei Song, Bin Hu,
- Abstract要約: 本研究では,脳波に基づく感情認識(SICLEER, Supervised Info-enhanced Contrastive Learning)のための新しいコントラスト学習フレームワークを提案する。
自己教師付きコントラスト学習損失と教師付き分類損失を組み合わせた共同学習モデルを提案する。
- 参考スコア(独自算出の注目度): 14.199298112101802
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This study introduces a novel Supervised Info-enhanced Contrastive Learning framework for EEG based Emotion Recognition (SICLEER). SI-CLEER employs multi-granularity contrastive learning to create robust EEG contextual representations, potentiallyn improving emotion recognition effectiveness. Unlike existing methods solely guided by classification loss, we propose a joint learning model combining self-supervised contrastive learning loss and supervised classification loss. This model optimizes both loss functions, capturing subtle EEG signal differences specific to emotion detection. Extensive experiments demonstrate SI-CLEER's robustness and superior accuracy on the SEED dataset compared to state-of-the-art methods. Furthermore, we analyze electrode performance, highlighting the significance of central frontal and temporal brain region EEGs in emotion detection. This study offers an universally applicable approach with potential benefits for diverse EEG classification tasks.
- Abstract(参考訳): 本研究では,脳波に基づく感情認識(SICLEER)のための新しい情報強調型コントラスト学習フレームワークを提案する。
SI-CLEERは、マルチグラニュラリティコントラスト学習を用いて、堅牢なEEGコンテキスト表現を作成し、感情認識の有効性を向上させる可能性がある。
分類損失のみによって導かれる既存の方法とは異なり、自己教師付きコントラスト学習損失と教師付き分類損失を組み合わせた共同学習モデルを提案する。
このモデルは両方の損失関数を最適化し、感情検出に特有の微妙な脳波信号の差を捉える。
SI-CLEERの頑健さとSEEDデータセットの精度を最先端の手法と比較した大規模な実験を行った。
さらに、感情検出における中心前頭葉と側頭葉の脳波の意義を強調し、電極性能を解析した。
本研究は、多種多様な脳波分類タスクに対する潜在的な利点を持つ普遍的なアプローチを提供する。
関連論文リスト
- Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
我々は,クロスコーパス脳波に基づく感情認識に対処するために,特徴アライメントを用いた新しいコントラスト学習フレームワークを提案する。
事前学習段階では、脳波信号の一般化可能な時間周波数表現を特徴付けるために、共同領域コントラスト学習戦略を導入する。
微調整の段階では、JCFAは脳電極間の構造的接続を考慮した下流タスクと共に洗練される。
論文 参考訳(メタデータ) (2024-04-15T08:21:17Z) - CSLP-AE: A Contrastive Split-Latent Permutation Autoencoder Framework
for Zero-Shot Electroencephalography Signal Conversion [49.1574468325115]
脳波分析の鍵となる目的は、基礎となる神経活動(コンテンツ)を抽出し、個体の変動(スタイル)を考慮することである。
近年の音声変換技術の発展に触発されて,脳波変換を直接最適化するCSLP-AEフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-13T22:46:43Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Emotion Detection from EEG using Transfer Learning [0.0]
我々は,脳波に基づく感情検出において,限られたデータ可用性の課題を克服するために伝達学習を採用した。
モデルへの入力は、平均位相コヒーレンス (MPC) と正方形コヒーレンス (MSC) からなる画像行列の形で行われる。
論文 参考訳(メタデータ) (2023-06-09T05:43:06Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Emotion Estimation from EEG -- A Dual Deep Learning Approach Combined
with Saliency [2.555313870523154]
本稿では,コンピュータビジョンに特化した新しい深層学習(DL)モデルと,専門家が定義する生理的知識を考慮した2つの手法を提案する。
グローバルなアプローチを示すため、このモデルは4つの公開データセットで評価され、最先端のアプローチと同じような結果が得られる。
論文 参考訳(メタデータ) (2022-01-11T11:38:36Z) - Contrastive Learning of Subject-Invariant EEG Representations for
Cross-Subject Emotion Recognition [9.07006689672858]
本稿では、信頼度の高いクロスオブジェクト感情認識のためのISAのためのコントラスト学習法を提案する。
ISAは、異なる刺激に対して同じ刺激を受けた被験者間での脳波信号の類似性を最大化する。
脳波信号から物体間表現を学習するために,深部空間畳み込み層と時間畳み込み層を有する畳み込みニューラルネットワークを適用した。
論文 参考訳(メタデータ) (2021-09-20T14:13:45Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - EEG-based Cross-Subject Driver Drowsiness Recognition with an
Interpretable Convolutional Neural Network [0.0]
我々は,新しい畳み込みニューラルネットワークと解釈手法を組み合わせることで,分類の重要な特徴のサンプルワイズ分析を可能にする。
その結果,11名の被験者に対して平均78.35%の精度が得られた。
論文 参考訳(メタデータ) (2021-05-30T14:47:20Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。