論文の概要: Emotion Estimation from EEG -- A Dual Deep Learning Approach Combined
with Saliency
- arxiv url: http://arxiv.org/abs/2201.03891v1
- Date: Tue, 11 Jan 2022 11:38:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-12 17:44:07.442268
- Title: Emotion Estimation from EEG -- A Dual Deep Learning Approach Combined
with Saliency
- Title(参考訳): eegからの感情推定 ---saliencyと組み合わせた二重ディープラーニングアプローチ
- Authors: Victor Delvigne, Antoine Facchini, Hazem Wannous, Thierry Dutoit,
Laurence Ris and Jean-Philippe Vandeborre
- Abstract要約: 本稿では,コンピュータビジョンに特化した新しい深層学習(DL)モデルと,専門家が定義する生理的知識を考慮した2つの手法を提案する。
グローバルなアプローチを示すため、このモデルは4つの公開データセットで評価され、最先端のアプローチと同じような結果が得られる。
- 参考スコア(独自算出の注目度): 2.555313870523154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emotion estimation is an active field of research that has an important
impact on the interaction between human and computer. Among the different
modality to assess emotion, electroencephalogram (EEG) representing the
electrical brain activity presented motivating results during the last decade.
Emotion estimation from EEG could help in the diagnosis or rehabilitation of
certain diseases. In this paper, we propose a dual method considering the
physiological knowledge defined by specialists combined with novel deep
learning (DL) models initially dedicated to computer vision. The joint learning
has been enhanced with model saliency analysis. To present a global approach,
the model has been evaluated on four publicly available datasets and achieves
similar results to the state-of-theart approaches and outperforming results for
two of the proposed datasets with a lower standard deviation that reflects
higher stability. For sake of reproducibility, the codes and models proposed in
this paper are available at github.com/VDelv/Emotion-EEG.
- Abstract(参考訳): 感情の推定は、人間とコンピュータの相互作用に重要な影響を与える研究の活発な分野である。
感情を評価するための異なるモダリティの中で、脳波(EEG)は過去10年間に動機づけた結果を示した。
脳波による感情推定は、特定の疾患の診断やリハビリに役立つ。
本稿では,コンピュータビジョンに特化した新しい深層学習(DL)モデルと,専門家が定義する生理的知識を考慮した2つの手法を提案する。
モデル塩分分析により共同学習が強化された。
グローバルなアプローチを提案するため、このモデルは4つの公開データセットで評価され、最先端のアプローチと同じような結果が得られ、より高い安定性を反映した標準偏差の低い2つのデータセットに対して性能が向上する。
本論文で提案するコードとモデルは再現性のためにgithub.com/VDelv/Emotion-EEGで公開されている。
関連論文リスト
- A Supervised Information Enhanced Multi-Granularity Contrastive Learning Framework for EEG Based Emotion Recognition [14.199298112101802]
本研究では,脳波に基づく感情認識(SICLEER, Supervised Info-enhanced Contrastive Learning)のための新しいコントラスト学習フレームワークを提案する。
自己教師付きコントラスト学習損失と教師付き分類損失を組み合わせた共同学習モデルを提案する。
論文 参考訳(メタデータ) (2024-05-12T11:51:00Z) - Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
我々は,クロスコーパス脳波に基づく感情認識に対処するために,特徴アライメントを用いた新しいコントラスト学習フレームワークを提案する。
事前学習段階では、脳波信号の一般化可能な時間周波数表現を特徴付けるために、共同領域コントラスト学習戦略を導入する。
微調整の段階では、JCFAは脳電極間の構造的接続を考慮した下流タスクと共に洗練される。
論文 参考訳(メタデータ) (2024-04-15T08:21:17Z) - New Approach for an Affective Computing-Driven Quality of Experience
(QoE) Prediction [0.0]
本稿では,感情型コンピュータ駆動のQuality of Experience(QoE)予測の新しいモデルを提案する。
The best results were obtained with a LSTM based model, presented a F1-score from 68% to 78%。
論文 参考訳(メタデータ) (2023-11-05T13:21:07Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Data augmentation for learning predictive models on EEG: a systematic
comparison [79.84079335042456]
脳波(EEG)分類タスクの深層学習は、ここ数年急速に増加している。
EEG分類タスクのディープラーニングは、比較的小さなEEGデータセットによって制限されている。
データ拡張は、コンピュータビジョンや音声などのアプリケーションにまたがる最先端のパフォーマンスを得るために重要な要素となっている。
論文 参考訳(メタデータ) (2022-06-29T09:18:15Z) - Cross-individual Recognition of Emotions by a Dynamic Entropy based on
Pattern Learning with EEG features [2.863100352151122]
複数の個体の神経生理学的特徴に関連する情報的指標を抽象化するために,動的エントロピーに基づくパターン学習(DEPL)として表されるディープラーニングフレームワークを提案する。
DEPLは、ダイナミックエントロピーに基づく特徴の皮質位置間の相互依存性をモデル化することにより、ディープ畳み込みニューラルネットワークによって生成された表現の能力を向上した。
論文 参考訳(メタデータ) (2020-09-26T07:22:07Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。