Graph neural networks for power grid operational risk assessment under evolving grid topology
- URL: http://arxiv.org/abs/2405.07343v1
- Date: Sun, 12 May 2024 17:40:27 GMT
- Title: Graph neural networks for power grid operational risk assessment under evolving grid topology
- Authors: Yadong Zhang, Pranav M Karve, Sankaran Mahadevan,
- Abstract summary: This article investigates the ability of graph neural networks (GNNs) to identify risky conditions in a power grid over the subsequent few hours.
The GNNs are trained using supervised learning, to predict the power grid's aggregated bus-level under different power supply and demand conditions.
The excellent accuracy of GNN-based reliability and risk assessment suggests that GNN models can substantially improve situational awareness.
- Score: 4.6289929100615
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This article investigates the ability of graph neural networks (GNNs) to identify risky conditions in a power grid over the subsequent few hours, without explicit, high-resolution information regarding future generator on/off status (grid topology) or power dispatch decisions. The GNNs are trained using supervised learning, to predict the power grid's aggregated bus-level (either zonal or system-level) or individual branch-level state under different power supply and demand conditions. The variability of the stochastic grid variables (wind/solar generation and load demand), and their statistical correlations, are rigorously considered while generating the inputs for the training data. The outputs in the training data, obtained by solving numerous mixed-integer linear programming (MILP) optimal power flow problems, correspond to system-level, zonal and transmission line-level quantities of interest (QoIs). The QoIs predicted by the GNNs are used to conduct hours-ahead, sampling-based reliability and risk assessment w.r.t. zonal and system-level (load shedding) as well as branch-level (overloading) failure events. The proposed methodology is demonstrated for three synthetic grids with sizes ranging from 118 to 2848 buses. Our results demonstrate that GNNs are capable of providing fast and accurate prediction of QoIs and can be good proxies for computationally expensive MILP algorithms. The excellent accuracy of GNN-based reliability and risk assessment suggests that GNN models can substantially improve situational awareness by quickly providing rigorous reliability and risk estimates.
Related papers
- SafePowerGraph: Safety-aware Evaluation of Graph Neural Networks for Transmission Power Grids [55.35059657148395]
We present SafePowerGraph, the first simulator-agnostic, safety-oriented framework and benchmark for Graph Neural Networks (GNNs) in power systems (PS) operations.
SafePowerGraph integrates multiple PF and OPF simulators and assesses GNN performance under diverse scenarios, including energy price variations and power line outages.
arXiv Detail & Related papers (2024-07-17T09:01:38Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - Power grid operational risk assessment using graph neural network
surrogates [5.202524136984542]
We investigate the utility of graph neural networks (GNNs) as proxies of power grid operational decision-making algorithms.
GNNs are capable of providing fast and accurate prediction of QoIs.
The excellent accuracy of GNN-based reliability and risk assessment suggests that GNN surrogate has the potential to be applied in real-time and hours-ahead.
arXiv Detail & Related papers (2023-11-21T03:02:30Z) - Operational risk quantification of power grids using graph neural network surrogates of the DC OPF [4.6289929100615]
A DC OPF surrogate modeling framework is developed for Monte Carlo (MC)-based risk quantification in power grid operation.
It is shown that the GNN surrogates are sufficiently accurate for predicting the (bus-level, branch-level and system-level) grid state.
The article thus develops tools for fast reliability and risk quantification in real-world power grids using GNN-based surrogates.
arXiv Detail & Related papers (2023-11-07T02:16:50Z) - Graph Neural Networks on Factor Graphs for Robust, Fast, and Scalable
Linear State Estimation with PMUs [1.1470070927586016]
We present a method that uses graph neural networks (GNNs) to learn complex bus voltage estimates from PMU voltage and current measurements.
We propose an original implementation of GNNs over the power system's factor graph to simplify the integration of various types and quantities of measurements.
This model is highly efficient and scalable, as its computational complexity is linear with respect to the number of nodes in the power system.
arXiv Detail & Related papers (2023-04-28T08:17:52Z) - Robust and Fast Data-Driven Power System State Estimator Using Graph
Neural Networks [1.2891210250935146]
We present a method for training a model based on graph neural networks (GNNs) to learn estimates from PMU voltage and current measurements.
We propose an original GNN implementation over the power system's factor graph to simplify the incorporation of various types and numbers of measurements.
arXiv Detail & Related papers (2022-06-06T16:40:54Z) - State Estimation in Electric Power Systems Leveraging Graph Neural
Networks [1.2891210250935146]
This paper proposes training a graph neural network (GNN) to learn the estimates given the PMU voltage and current measurements as inputs.
GNN is trained using synthetic datasets, created by randomly sampling sets of measurements in the power system.
The presented results display the accuracy of GNN predictions in various test scenarios and tackle the sensitivity of the predictions to the missing data.
arXiv Detail & Related papers (2022-01-11T16:58:20Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
Graph neural networks (GNN) have emerged as a vehicle for applying deep network architectures to graph and relational data.
In this paper, we build upon existing work and treat GNN neighbor sampling as a multi-armed bandit problem.
We introduce a newly-designed reward function that introduces some degree of bias designed to reduce variance and avoid unstable, possibly-unbounded payouts.
arXiv Detail & Related papers (2021-03-01T15:55:58Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.