論文の概要: TKAN: Temporal Kolmogorov-Arnold Networks
- arxiv url: http://arxiv.org/abs/2405.07344v2
- Date: Wed, 5 Jun 2024 16:46:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 00:09:48.191726
- Title: TKAN: Temporal Kolmogorov-Arnold Networks
- Title(参考訳): TKAN: 一時的コルモゴロフ・アルノルドネットワーク
- Authors: Remi Genet, Hugo Inzirillo,
- Abstract要約: LSTM(Long Short-Term Memory)は、シーケンシャルデータにおける長期的な依存関係をキャプチャする能力を示している。
Kolmogorov-Arnold Networks (KANs) に触発されたマルチ層パーセプトロン(MLP)の代替案
我々はkanとLSTM、TKAN(Temporal Kolomogorov-Arnold Networks)にインスパイアされた新しいニューラルネットワークアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recurrent Neural Networks (RNNs) have revolutionized many areas of machine learning, particularly in natural language and data sequence processing. Long Short-Term Memory (LSTM) has demonstrated its ability to capture long-term dependencies in sequential data. Inspired by the Kolmogorov-Arnold Networks (KANs) a promising alternatives to Multi-Layer Perceptrons (MLPs), we proposed a new neural networks architecture inspired by KAN and the LSTM, the Temporal Kolomogorov-Arnold Networks (TKANs). TKANs combined the strenght of both networks, it is composed of Recurring Kolmogorov-Arnold Networks (RKANs) Layers embedding memory management. This innovation enables us to perform multi-step time series forecasting with enhanced accuracy and efficiency. By addressing the limitations of traditional models in handling complex sequential patterns, the TKAN architecture offers significant potential for advancements in fields requiring more than one step ahead forecasting.
- Abstract(参考訳): リカレントニューラルネットワーク(RNN)は、特に自然言語やデータシーケンス処理において、機械学習の多くの領域に革命をもたらした。
LSTM(Long Short-Term Memory)は、シーケンシャルデータにおける長期的な依存関係をキャプチャする能力を示している。
MLP(Multi-Layer Perceptrons)に代わる有望な代替手段であるKolmogorov-Arnold Networks(KAN)に触発された我々は、kanとLSTM、TKAN(Temporal Kologorov-Arnold Networks)に触発された新しいニューラルネットワークアーキテクチャを提案した。
TKANは両方のネットワークの強みを組み合わせたもので、メモリ管理を組み込んだRecurring Kolmogorov-Arnold Networks (RKANs) Layersで構成されている。
この革新により、精度と効率を向上したマルチステップ時系列予測が可能となる。
複雑なシーケンシャルパターンを扱う場合の従来のモデルの限界に対処することにより、TKANアーキテクチャは予測を1段階以上進める必要がある分野において、大きな可能性をもたらす。
関連論文リスト
- Deep State Space Recurrent Neural Networks for Time Series Forecasting [0.0]
本稿では,固有状態空間モデルの原理とリカレントニューラルネットワーク(RNN)の動的機能とを融合した新しいニューラルネットワークフレームワークを提案する。
結果によると、Kolmogorov-Arnold Networks(KAN)とLSTMにインスパイアされたTKANは、有望な結果を示している。
論文 参考訳(メタデータ) (2024-07-21T17:59:27Z) - From NeurODEs to AutoencODEs: a mean-field control framework for
width-varying Neural Networks [68.8204255655161]
本稿では,動的に駆動する制御フィールドをベースとした,AutoencODEと呼ばれる新しいタイプの連続時間制御システムを提案する。
損失関数が局所凸な領域では,多くのアーキテクチャが復元可能であることを示す。
論文 参考訳(メタデータ) (2023-07-05T13:26:17Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Neural Architecture Search for Spiking Neural Networks [10.303676184878896]
スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワーク(ANN)に代わるエネルギー効率の高い代替手段として大きな注目を集めている。
従来のSNN手法のほとんどはANNのようなアーキテクチャを使用しており、これはSNNにおけるバイナリ情報の時間的シーケンス処理に準最適性能を提供する。
より優れたSNNアーキテクチャを見つけるための新しいニューラルネットワーク探索(NAS)手法を提案する。
論文 参考訳(メタデータ) (2022-01-23T16:34:27Z) - Online learning of windmill time series using Long Short-term Cognitive
Networks [58.675240242609064]
風車農場で生成されたデータの量は、オンライン学習が従うべき最も有効な戦略となっている。
我々はLong Short-term Cognitive Networks (LSTCNs) を用いて、オンライン環境での風車時系列を予測する。
提案手法は,単純なRNN,長期記憶,Gated Recurrent Unit,Hidden Markov Modelに対して最も低い予測誤差を報告した。
論文 参考訳(メタデータ) (2021-07-01T13:13:24Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Introducing the Hidden Neural Markov Chain framework [7.85426761612795]
本稿では,ニューラルモデルの新しいファミリーであるHNMC(Hidden Neural Markov Chain)フレームワークを提案する。
クラシックなHNMC、HNMC2、HNMC-CNの3つのモデルを提案します。
この新しいニューラルネットワークシーケンシャルフレームワークの可能性を示すもので、新しいモデルへの道を開き、最終的には一般的なBiLSTMやBiGRUと競合する可能性がある。
論文 参考訳(メタデータ) (2021-02-17T20:13:45Z) - Hybrid Backpropagation Parallel Reservoir Networks [8.944918753413827]
本稿では,貯水池のランダムな時間的特徴と深層ニューラルネットワークの読み出し能力と,バッチ正規化を併用した新しいハイブリッドネットワークを提案する。
我々の新しいネットワークはLSTMやGRUよりも優れていることを示す。
また, HBP-ESN M-Ring と呼ばれる新しいメタリング構造を組み込むことで, 1つの大きな貯水池に類似した性能を実現し, メモリ容量の最大化を図っている。
論文 参考訳(メタデータ) (2020-10-27T21:03:35Z) - Recurrent Graph Tensor Networks: A Low-Complexity Framework for
Modelling High-Dimensional Multi-Way Sequence [24.594587557319837]
我々は、リカレントニューラルネットワーク(RNN)における隠れ状態のモデリングを近似するグラフフィルタフレームワークを開発する。
提案するフレームワークは、複数のマルチウェイシーケンスモデリングタスクを通じて検証され、従来のRNNに対してベンチマークされる。
提案したRGTNは,標準RNNよりも優れるだけでなく,従来のRNNと関連する次元の曲線を緩和できることを示す。
論文 参考訳(メタデータ) (2020-09-18T10:13:36Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。