論文の概要: Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
- arxiv url: http://arxiv.org/abs/2410.05500v1
- Date: Mon, 7 Oct 2024 21:12:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 18:18:05.010561
- Title: Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
- Title(参考訳): 深層学習のための残留コルモゴロフ・アルノルドネットワーク
- Authors: Ray Congrui Yu, Sherry Wu, Jiang Gui,
- Abstract要約: 我々はKANフレームワークを残留成分として組み込んだResidual Arnoldを紹介する。
視覚データにおける深部CNNの能力を高めるためのRKANの可能性を示す。
- 参考スコア(独自算出の注目度): 0.5852077003870417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the strong performance in many computer vision tasks, Convolutional Neural Networks (CNNs) can sometimes struggle to efficiently capture long-range, complex non-linear dependencies in deeper layers of the network. We address this limitation by introducing Residual KAN, which incorporates the Kolmogorov-Arnold Network (KAN) within the CNN framework as a residual component. Our approach uses Chebyshev polynomials as the basis for KAN convolutions that enables more expressive and adaptive feature representations while maintaining computational efficiency. The proposed RKAN blocks, when integrated into established architectures such as ResNet and DenseNet, offer consistent improvements over the baseline models on various well-known benchmarks. Our results demonstrate the potential of RKAN to enhance the capabilities of deep CNNs in visual data.
- Abstract(参考訳): 多くのコンピュータビジョンタスクの強いパフォーマンスにもかかわらず、畳み込みニューラルネットワーク(CNN)は、ネットワークの深い層において、長い範囲の複雑な非線形依存を効率的に捉えるのに苦労することがある。
我々は、CNNフレームワークにKAN(Kolmogorov-Arnold Network)を組み込んだResidual Kanを導入することで、この制限に対処する。
提案手法では, 計算効率を維持しつつ, より表現的かつ適応的な特徴表現を可能にするkan畳み込みの基礎として, チェビシェフ多項式を用いる。
提案されたRKANブロックは、ResNetやDenseNetのような確立したアーキテクチャに統合されると、様々なよく知られたベンチマークのベースラインモデルに対して一貫した改善を提供する。
視覚データにおける深部CNNの能力を高めるためのRKANの可能性を示す。
関連論文リスト
- Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KAN)はMulti-Layer Perceptrons (MLP)に代わる有望な代替品である。
カンはコルモゴロフ・アルノルドの表現定理と密接に一致し、モデル精度と解釈可能性の両方を高める可能性がある。
この結果から,kanベースのオートエンコーダは復元精度の点で競争力を発揮することが示された。
論文 参考訳(メタデータ) (2024-10-02T22:56:00Z) - Suitability of KANs for Computer Vision: A preliminary investigation [28.030708956348864]
Kolmogorov-Arnold Networks (KAN) はニューラルネットワークのパラダイムを導入し、ネットワークの端に学習可能な関数を実装する。
本研究は、視覚モデルにおけるkansの適用性と有効性を評価し、基本的な認識とセグメンテーションタスクに焦点をあてる。
論文 参考訳(メタデータ) (2024-06-13T13:13:17Z) - U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KAN)は、非線形学習可能なアクティベーション関数のスタックを通じてニューラルネットワーク学習を再構築する。
トークン化中間表現であるU-KAN上に専用kan層を統合することにより,確立したU-Netパイプラインを検証,修正,再設計する。
さらに、拡散モデルにおける代替U-Netノイズ予測器としてのU-KANの可能性を探り、タスク指向モデルアーキテクチャの生成にその適用性を実証した。
論文 参考訳(メタデータ) (2024-06-05T04:13:03Z) - Towards Efficient Deep Spiking Neural Networks Construction with Spiking Activity based Pruning [17.454100169491497]
本稿では,Spking Channel Activity-based (SCA) network pruning frameworkという,畳み込みカーネルの動作レベルに基づく構造化プルーニング手法を提案する。
本手法は, 学習中の畳み込みカーネルの切断・再生によりネットワーク構造を動的に調整し, 現在の目標タスクへの適応性を高める。
論文 参考訳(メタデータ) (2024-06-03T07:44:37Z) - TKAN: Temporal Kolmogorov-Arnold Networks [0.0]
LSTM(Long Short-Term Memory)は、シーケンシャルデータにおける長期的な依存関係をキャプチャする能力を示している。
Kolmogorov-Arnold Networks (KANs) に触発されたマルチ層パーセプトロン(MLP)の代替案
我々はkanとLSTM、TKAN(Temporal Kolomogorov-Arnold Networks)にインスパイアされた新しいニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-05-12T17:40:48Z) - An Efficient Speech Separation Network Based on Recurrent Fusion Dilated
Convolution and Channel Attention [0.2538209532048866]
本稿では,拡張畳み込み,マルチスケール融合(MSF),チャネルアテンションを組み合わせた効率的な音声分離ニューラルネットワーク ARFDCN を提案する。
実験結果から,本モデルでは性能と計算効率のバランスが良好であることが示唆された。
論文 参考訳(メタデータ) (2023-06-09T13:30:27Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像において顕著な性能を得た。
本稿では,注目ブロックを効率的に活用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-17T11:06:29Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
構造変化のない任意の解像度,次元,長さのタスクに対して,連続的な畳み込みカーネルを備えた単一CNNアーキテクチャを提案する。
1$mathrmD$)とビジュアルデータ(2$mathrmD$)の幅広いタスクに同じCCNNを適用することで、我々のアプローチの汎用性を示す。
私たちのCCNNは競争力があり、検討されたすべてのタスクで現在の最先端を上回ります。
論文 参考訳(メタデータ) (2022-06-07T15:48:02Z) - Image Super-resolution with An Enhanced Group Convolutional Neural
Network [102.2483249598621]
学習能力の強いCNNは、超解像問題を解くために広く選択されている。
浅層構造を持つ超解像群CNN(ESRGCNN)を提案する。
ESRGCNNは、SISRの性能、複雑さ、実行速度、画質評価およびSISRの視覚効果の観点から、最先端技術を上回っていると報告されている。
論文 参考訳(メタデータ) (2022-05-29T00:34:25Z) - Kernel-Based Smoothness Analysis of Residual Networks [85.20737467304994]
ResNets(Residual Networks)は、これらの強力なモダンアーキテクチャの中でも際立っている。
本稿では,2つのモデル,すなわちResNetsが勾配よりもスムーズな傾向を示す。
論文 参考訳(メタデータ) (2020-09-21T16:32:04Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
我々は,グローバルな残差学習と局所的なマイクロセンスアグリゲーションを備えた新しいアーキテクチャであるMicro-Dense Netsを提案する。
我々のマイクロセンスブロックはニューラルアーキテクチャ検索に基づくモデルと統合して性能を向上させることができる。
論文 参考訳(メタデータ) (2020-04-19T08:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。