PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics
- URL: http://arxiv.org/abs/2405.07407v1
- Date: Mon, 13 May 2024 01:03:06 GMT
- Title: PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics
- Authors: Jerrin Bright, Bavesh Balaji, Yuhao Chen, David A Clausi, John S Zelek,
- Abstract summary: PitcherNet is an end-to-end automated system that analyzes pitcher kinematics directly from live broadcast video.
It achieves robust analysis results with 96.82% accuracy in pitcher tracklet identification.
PitcherNet paves the way for the future of baseball analytics by optimizing pitching strategies, preventing injuries, and unlocking a deeper understanding of pitcher mechanics.
- Score: 13.928557561312026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the high-stakes world of baseball, every nuance of a pitcher's mechanics holds the key to maximizing performance and minimizing runs. Traditional analysis methods often rely on pre-recorded offline numerical data, hindering their application in the dynamic environment of live games. Broadcast video analysis, while seemingly ideal, faces significant challenges due to factors like motion blur and low resolution. To address these challenges, we introduce PitcherNet, an end-to-end automated system that analyzes pitcher kinematics directly from live broadcast video, thereby extracting valuable pitch statistics including velocity, release point, pitch position, and release extension. This system leverages three key components: (1) Player tracking and identification by decoupling actions from player kinematics; (2) Distribution and depth-aware 3D human modeling; and (3) Kinematic-driven pitch statistics. Experimental validation demonstrates that PitcherNet achieves robust analysis results with 96.82% accuracy in pitcher tracklet identification, reduced joint position error by 1.8mm and superior analytics compared to baseline methods. By enabling performance-critical kinematic analysis from broadcast video, PitcherNet paves the way for the future of baseball analytics by optimizing pitching strategies, preventing injuries, and unlocking a deeper understanding of pitcher mechanics, forever transforming the game.
Related papers
- MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.
By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.
We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Passing Heatmap Prediction Based on Transformer Model and Tracking Data [0.0]
This research presents a novel deep-learning network architecture which is capable to predict the potential end location of passes.
Once analysed more than 28,000 pass events, a robust prediction can be achieved with more than 0.7 Top-1 accuracy.
And based on the prediction, a better understanding of the pitch control and pass option could be reached to measure players' off-ball movement contribution to defensive performance.
arXiv Detail & Related papers (2023-09-04T11:14:22Z) - Mitigating Motion Blur for Robust 3D Baseball Player Pose Modeling for
Pitch Analysis [5.010690651107531]
We propose a synthetic data augmentation pipeline to enhance the model's capability to deal with the pitcher's blurry actions.
We observe a notable reduction in the loss by 54.2% and 36.2% on the test dataset for 2D and 3D pose estimation respectively.
arXiv Detail & Related papers (2023-09-02T19:42:59Z) - Automated Hit-frame Detection for Badminton Match Analysis [1.3300217947936062]
This research aims to advance sports analysis in badminton, systematically detecting hit-frames automatically from match videos using modern deep learning techniques.
The data included in hit-frames can subsequently be utilized to synthesize players' strokes and on-court movement, as well as for other downstream applications such as analyzing training tasks and competition strategy.
In the study, we achieved 99% accuracy on shot angle recognition for video trimming, over 92% accuracy for applying player keypoints sequences on shuttlecock flying direction prediction, and reported the evaluation results of rally-wise video trimming and hit-frame detection.
arXiv Detail & Related papers (2023-07-29T15:01:27Z) - DBQ-SSD: Dynamic Ball Query for Efficient 3D Object Detection [113.5418064456229]
We propose a Dynamic Ball Query (DBQ) network to adaptively select a subset of input points according to the input features.
It can be embedded into some state-of-the-art 3D detectors and trained in an end-to-end manner, which significantly reduces the computational cost.
arXiv Detail & Related papers (2022-07-22T07:08:42Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
We propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each.
The dataset is fully annotated with bounding boxes and tracklet IDs.
Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved.
arXiv Detail & Related papers (2022-04-14T12:22:12Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
Streaming perception is proposed to jointly evaluate the latency and accuracy into a single metric for video online perception.
We build a simple and effective framework for streaming perception.
Our method achieves competitive performance on Argoverse-HD dataset and improves the AP by 4.9% compared to the strong baseline.
arXiv Detail & Related papers (2022-03-23T11:33:27Z) - DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation [58.06505882939195]
DeciWatch is a framework for video-based 2D/3D human pose estimation.
It can achieve 10 times efficiency improvement over existing works without any performance degradation.
arXiv Detail & Related papers (2022-03-16T16:03:37Z) - Predicting the outcome of team movements -- Player time series analysis
using fuzzy and deep methods for representation learning [0.0]
We provide a framework for the useful encoding of short tactics and space occupations in a more extended sequence of movements or tactical plans.
We discuss the effectiveness of the proposed approach for prediction and recognition tasks on the professional basketball SportVU dataset for the 2015-16 half-season.
arXiv Detail & Related papers (2021-09-13T18:42:37Z) - Unsupervised Temporal Feature Aggregation for Event Detection in
Unstructured Sports Videos [10.230408415438966]
We study the case of event detection in sports videos for unstructured environments with arbitrary camera angles.
We identify and solve two major problems: unsupervised identification of players in an unstructured setting and generalization of the trained models to pose variations due to arbitrary shooting angles.
arXiv Detail & Related papers (2020-02-19T10:24:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.