論文の概要: PeRFlow: Piecewise Rectified Flow as Universal Plug-and-Play Accelerator
- arxiv url: http://arxiv.org/abs/2405.07510v5
- Date: Mon, 2 Sep 2024 06:27:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 18:20:55.434011
- Title: PeRFlow: Piecewise Rectified Flow as Universal Plug-and-Play Accelerator
- Title(参考訳): PeRFlow:Universal Plug-and-Play AcceleratorとしてのPiecewise Rectified Flow
- Authors: Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, Jiashi Feng,
- Abstract要約: Piecewise Rectified Flow (PeRFlow) は拡散モデルの高速化のためのフローベース手法である。
PeRFlowは数ステップの世代で優れたパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 73.80050807279461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Piecewise Rectified Flow (PeRFlow), a flow-based method for accelerating diffusion models. PeRFlow divides the sampling process of generative flows into several time windows and straightens the trajectories in each interval via the reflow operation, thereby approaching piecewise linear flows. PeRFlow achieves superior performance in a few-step generation. Moreover, through dedicated parameterizations, the PeRFlow models inherit knowledge from the pretrained diffusion models. Thus, the training converges fast and the obtained models show advantageous transfer ability, serving as universal plug-and-play accelerators that are compatible with various workflows based on the pre-trained diffusion models. Codes for training and inference are publicly released. https://github.com/magic-research/piecewise-rectified-flow
- Abstract(参考訳): 拡散モデルを高速化するフローベース手法であるPecewise Rectified Flow(PeRFlow)を提案する。
PeRFlowは、生成フローのサンプリングプロセスを複数の時間ウィンドウに分割し、リフロー操作を通じて各間隔の軌跡を直線化し、断片的な線形フローに近づく。
PeRFlowは数ステップの世代で優れたパフォーマンスを達成する。
さらに、専用のパラメータ化を通じて、PeRFlowモデルは事前訓練された拡散モデルから知識を継承する。
このように、トレーニングは高速に収束し、得られたモデルは、事前訓練された拡散モデルに基づいて様々なワークフローと互換性のある普遍的なプラグアンドプレイアクセラレータとして機能する、有利な転送能力を示す。
トレーニングと推論のためのコードも公開されている。
https://github.com/magic-research/piecewise-rectified-flow
関連論文リスト
- Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow [65.51671121528858]
拡散モデルは、視覚生成を大幅に改善したが、生成ODEを解くという計算集約的な性質のため、生成速度の遅さによって妨げられている。
広く認識されている解である整流流は、ODEパスを直線化することで生成速度を向上させる。
本稿では,より広範な拡散モデルのカテゴリをカバーするために,設計空間と修正の応用範囲を一般化するRectified Diffusionを提案する。
論文 参考訳(メタデータ) (2024-10-09T17:43:38Z) - FlowTurbo: Towards Real-time Flow-Based Image Generation with Velocity Refiner [70.90505084288057]
フローベースモデルはサンプリングプロセス中により直線的なサンプリング軌道を生成する傾向にある。
擬似修正器やサンプル認識コンパイルなどいくつかの手法を導入し,推論時間をさらに短縮する。
FlowTurboはImageNet上で100(ms/img)で2.12FID、38(ms/img)で3.93FIDに達する
論文 参考訳(メタデータ) (2024-09-26T17:59:51Z) - FlowIE: Efficient Image Enhancement via Rectified Flow [71.6345505427213]
FlowIEはフローベースのフレームワークであり、基本的な分布から高品質な画像への直線パスを推定する。
私たちのコントリビューションは、合成および実世界のデータセットに関する包括的な実験を通じて、厳密に検証されています。
論文 参考訳(メタデータ) (2024-06-01T17:29:29Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
光フロー推定学習のためのGMFlowフレームワークを提案する。
機能拡張のためのカスタマイズトランスフォーマー、グローバル機能マッチングのための相関層とソフトマックス層、フロー伝搬のための自己保持層である。
我々の新しいフレームワークは、挑戦的なSintelベンチマークにおいて、32項目RAFTのパフォーマンスより優れています。
論文 参考訳(メタデータ) (2021-11-26T18:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。