論文の概要: Dehazing Remote Sensing and UAV Imagery: A Review of Deep Learning, Prior-based, and Hybrid Approaches
- arxiv url: http://arxiv.org/abs/2405.07520v1
- Date: Mon, 13 May 2024 07:35:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 14:34:42.530366
- Title: Dehazing Remote Sensing and UAV Imagery: A Review of Deep Learning, Prior-based, and Hybrid Approaches
- Title(参考訳): リモートセンシングとUAV画像のデハージング:Dehazing Remote Sensing and UAV Imagery: A review of Deep Learning, Prior-based and Hybrid Approaches
- Authors: Gao Yu Lee, Jinkuan Chen, Tanmoy Dam, Md Meftahul Ferdaus, Daniel Puiu Poenar, Vu N Duong,
- Abstract要約: 高品質な画像は、リモートセンシングおよびUAVアプリケーションに不可欠である。
大気ヘイズは 画像の質を著しく低下させ 画像の劣化を 重要な研究領域にします
- 参考スコア(独自算出の注目度): 4.516330345599765
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: High-quality images are crucial in remote sensing and UAV applications, but atmospheric haze can severely degrade image quality, making image dehazing a critical research area. Since the introduction of deep convolutional neural networks, numerous approaches have been proposed, and even more have emerged with the development of vision transformers and contrastive/few-shot learning. Simultaneously, papers describing dehazing architectures applicable to various Remote Sensing (RS) domains are also being published. This review goes beyond the traditional focus on benchmarked haze datasets, as we also explore the application of dehazing techniques to remote sensing and UAV datasets, providing a comprehensive overview of both deep learning and prior-based approaches in these domains. We identify key challenges, including the lack of large-scale RS datasets and the need for more robust evaluation metrics, and outline potential solutions and future research directions to address them. This review is the first, to our knowledge, to provide comprehensive discussions on both existing and very recent dehazing approaches (as of 2024) on benchmarked and RS datasets, including UAV-based imagery.
- Abstract(参考訳): 高品質の画像はリモートセンシングやUAVの応用には欠かせないが、大気汚染は画像の質を著しく低下させ、画像の劣化を重要な研究領域にしている。
深層畳み込みニューラルネットワークの導入以来、多くのアプローチが提案され、さらにビジョントランスフォーマーやコントラスト/ファウショット学習の開発が進んでいる。
同時に、様々なリモートセンシング(RS)ドメインに適用可能なデハージングアーキテクチャを記述する論文も発表されている。
このレビューは、従来のベンチマークされたヘイズデータセットよりも、リモートセンシングとUAVデータセットへのデハージングテクニックの適用を探求し、これらのドメインにおけるディープラーニングと事前ベースの両方のアプローチの包括的な概要を提供する。
大規模なRSデータセットの欠如や、より堅牢な評価指標の必要性など、主要な課題を特定し、それらに取り組むための潜在的なソリューションと今後の研究方向性を概説する。
このレビューは、我々の知る限り、UAVベースの画像を含むベンチマークおよびRSデータセットに関する既存のおよび非常に最近のデハージングアプローチ(2024年現在)について、包括的な議論を行う最初のものです。
関連論文リスト
- A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
水中画像強調(UIE)はコンピュータビジョン研究において重要な課題である。
多数のUIEアルゴリズムが開発されているにもかかわらず、網羅的で体系的なレビューはいまだに欠落している。
論文 参考訳(メタデータ) (2024-05-30T04:46:40Z) - InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images [11.916941756499435]
本稿では,リモートセンシング画像におけるインクリメンタルな数ショット物体検出の複雑な課題について検討する。
本稿では,新しい授業の漸進的な学習を促進するために,InfRSと呼ばれる先駆的な微調整技術を導入する。
我々はワッサーシュタイン距離に基づく原型校正戦略を開発し、破滅的な忘れ問題を軽減する。
論文 参考訳(メタデータ) (2024-05-18T13:39:50Z) - UDTIRI: An Online Open-Source Intelligent Road Inspection Benchmark
Suite [21.565438268381467]
このベンチマークスイートで公開された最初のオンラインコンペである道路穴検出タスクを紹介します。
我々のベンチマークは、最先端のオブジェクト検出、セマンティックセグメンテーション、インスタンスセグメンテーションネットワークの体系的かつ徹底的な評価を提供する。
多様な道路条件をより包括的に理解したアルゴリズムを提供することで、未解決の可能性を解き明かそうとしている。
論文 参考訳(メタデータ) (2023-04-18T09:13:52Z) - Deep Industrial Image Anomaly Detection: A Survey [85.44223757234671]
近年の深層学習の急速な発展は,産業用画像異常検出(IAD)のマイルストーンとなった
本稿では,ディープラーニングによる画像異常検出手法の総合的なレビューを行う。
画像異常検出のオープニング課題をいくつか取り上げる。
論文 参考訳(メタデータ) (2023-01-27T03:18:09Z) - Remote Sensing Image Classification using Transfer Learning and
Attention Based Deep Neural Network [59.86658316440461]
本稿では、転送学習技術とマルチヘッドアテンションスキームを活用した、深層学習に基づくRSISCフレームワークを提案する。
提案したディープラーニングフレームワークは、ベンチマークNWPU-RESISC45データセットに基づいて評価され、最高の分類精度94.7%を達成する。
論文 参考訳(メタデータ) (2022-06-20T10:05:38Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - Fine-Grained Image Analysis with Deep Learning: A Survey [146.22351342315233]
きめ細かい画像解析(FGIA)は、コンピュータビジョンとパターン認識における長年の根本的な問題である。
本稿では、FGIAの分野を再定義し、FGIAの2つの基礎研究領域、細粒度画像認識と細粒度画像検索を統合することで、FGIAの分野を広げようとしている。
論文 参考訳(メタデータ) (2021-11-11T09:43:56Z) - Deep-Learning-Based Single-Image Height Reconstruction from
Very-High-Resolution SAR Intensity Data [1.7894377200944511]
本稿では,リモートセンシングにおける他の重要なセンサモードである合成開口レーダ(SAR)データに対する,深層学習に基づく単一画像の高さ予測の初めての実演を示す。
SAR強度画像に対する畳み込みニューラルネットワーク(CNN)アーキテクチャの適用に加えて、トレーニングデータ生成のためのワークフローを提案する。
転送可能性に特に重点を置いているので、深層学習に基づく単一画像の高さ推定が可能であるだけでなく、目に見えないデータにかなりうまく転送可能であることを確認できます。
論文 参考訳(メタデータ) (2021-11-03T08:20:03Z) - A Comprehensive Survey on Image Dehazing Based on Deep Learning [89.77554550654227]
ヘイズの存在は画像の品質を著しく低下させる。
研究者は、ヘイズ画像の品質を回復するために、画像デハージング(ID)のための様々なアルゴリズムを設計した。
ディープラーニング(DL)ベースのデハージング技術を要約した研究はほとんどない。
論文 参考訳(メタデータ) (2021-06-07T03:51:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。