論文の概要: Towards Depth Foundation Model: Recent Trends in Vision-Based Depth Estimation
- arxiv url: http://arxiv.org/abs/2507.11540v1
- Date: Tue, 15 Jul 2025 17:59:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:03.219467
- Title: Towards Depth Foundation Model: Recent Trends in Vision-Based Depth Estimation
- Title(参考訳): 深度基礎モデルに向けて:ビジョンベース深度推定の最新動向
- Authors: Zhen Xu, Hongyu Zhou, Sida Peng, Haotong Lin, Haoyu Guo, Jiahao Shao, Peishan Yang, Qinglin Yang, Sheng Miao, Xingyi He, Yifan Wang, Yue Wang, Ruizhen Hu, Yiyi Liao, Xiaowei Zhou, Hujun Bao,
- Abstract要約: 深さ推定は3Dコンピュータビジョンの基本課題であり、3D再構成、自由視点レンダリング、ロボティクス、自律運転、AR/VR技術といった応用に不可欠である。
LiDARのようなハードウェアセンサーに依存する従来の方法は、しばしば高コスト、低解像度、環境感度によって制限され、現実のシナリオで適用性を制限する。
ビジョンベースの手法の最近の進歩は有望な代替手段を提供するが、低容量モデルアーキテクチャやドメイン固有の小規模データセットへの依存のため、一般化と安定性の課題に直面している。
- 参考スコア(独自算出の注目度): 75.30238170051291
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Depth estimation is a fundamental task in 3D computer vision, crucial for applications such as 3D reconstruction, free-viewpoint rendering, robotics, autonomous driving, and AR/VR technologies. Traditional methods relying on hardware sensors like LiDAR are often limited by high costs, low resolution, and environmental sensitivity, limiting their applicability in real-world scenarios. Recent advances in vision-based methods offer a promising alternative, yet they face challenges in generalization and stability due to either the low-capacity model architectures or the reliance on domain-specific and small-scale datasets. The emergence of scaling laws and foundation models in other domains has inspired the development of "depth foundation models": deep neural networks trained on large datasets with strong zero-shot generalization capabilities. This paper surveys the evolution of deep learning architectures and paradigms for depth estimation across the monocular, stereo, multi-view, and monocular video settings. We explore the potential of these models to address existing challenges and provide a comprehensive overview of large-scale datasets that can facilitate their development. By identifying key architectures and training strategies, we aim to highlight the path towards robust depth foundation models, offering insights into their future research and applications.
- Abstract(参考訳): 深さ推定は3Dコンピュータビジョンの基本課題であり、3D再構成、自由視点レンダリング、ロボティクス、自律運転、AR/VR技術といった応用に不可欠である。
LiDARのようなハードウェアセンサーに依存する従来の方法は、しばしば高コスト、低解像度、環境感度によって制限され、現実のシナリオで適用性を制限する。
ビジョンベースの手法の最近の進歩は有望な代替手段を提供するが、低容量モデルアーキテクチャやドメイン固有の小規模データセットへの依存のため、一般化と安定性の課題に直面している。
他の領域におけるスケーリング法則や基盤モデルの出現は、強力なゼロショット一般化機能を持つ大規模データセットでトレーニングされたディープニューラルネットワーク(deep neural network)という、"深層基盤モデル(deepth foundation model)"の開発にインスピレーションを与えている。
本稿では,モノキュラー,ステレオ,マルチビュー,モノキュラービデオ設定における深度推定のためのディープラーニングアーキテクチャとパラダイムの進化について検討する。
これらのモデルの可能性を探り、既存の課題に対処し、彼らの開発を容易にする大規模なデータセットを包括的に概観する。
重要なアーキテクチャとトレーニング戦略を識別することによって、堅牢な基盤モデルへの道のりを強調し、将来の研究や応用に関する洞察を提供することを目指しています。
関連論文リスト
- Advances in Feed-Forward 3D Reconstruction and View Synthesis: A Survey [154.50661618628433]
3D再構成とビュー合成は、拡張現実(AR)、仮想現実(VR)、デジタルツインといった没入型技術における基礎的な問題である。
深層学習によるフィードフォワードアプローチの最近の進歩は、高速で一般化可能な3次元再構成とビュー合成を可能にして、この分野に革命をもたらした。
論文 参考訳(メタデータ) (2025-07-19T06:13:25Z) - Review of Feed-forward 3D Reconstruction: From DUSt3R to VGGT [10.984522161856955]
3D再構成は、拡張現実やバーチャルリアリティー、自動運転、ロボット工学など、多くの応用の基盤となる技術だ。
ディープラーニングは、3D再構築におけるパラダイムシフトを触媒している。
新しいモデルでは、統合されたディープネットワークを使用して、カメラのポーズと密集した幾何学を、1つの前方通過における非拘束画像から直接推測する。
論文 参考訳(メタデータ) (2025-07-11T09:41:54Z) - A Systematic Investigation on Deep Learning-Based Omnidirectional Image and Video Super-Resolution [30.62413133817583]
本稿では,全方位画像とビデオ超解像の最近の進歩を体系的に概観する。
新しいデータセットである360Instaを導入し、全方位画像とビデオをオーステンシャルに劣化させた。
提案したデータセットと公開データセットの両方において,既存手法の総合的質的,定量的評価を行う。
論文 参考訳(メタデータ) (2025-06-07T08:24:44Z) - A Survey on Remote Sensing Foundation Models: From Vision to Multimodality [35.532200523631765]
リモートセンシングのための視覚とマルチモーダル基礎モデルは、インテリジェントな地理空間データ解釈能力を大幅に向上させた。
データタイプの多様性、大規模アノテートデータセットの必要性、マルチモーダル融合技術の複雑さは、これらのモデルの効果的なデプロイに重大な障害をもたらす。
本稿では、リモートセンシングのための最先端のビジョンモデルとマルチモーダル基礎モデルについて、アーキテクチャ、トレーニング方法、データセット、アプリケーションシナリオに焦点をあててレビューする。
論文 参考訳(メタデータ) (2025-03-28T01:57:35Z) - Survey on Monocular Metric Depth Estimation [0.9790236766474202]
深層学習法は通常、1つの画像から相対的な深さを推定するが、計量スケールの欠如はしばしば幾何学的矛盾をもたらす。
単分子距離推定(MMDE)は、絶対スケールで深度マップを作成することでこの問題に対処する。
本稿では,従来の幾何学的アプローチから現代ディープラーニングモデルへの進化を追究する,深度推定手法に関する構造化された調査を行う。
論文 参考訳(メタデータ) (2025-01-21T02:51:10Z) - Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - Vision Foundation Models in Remote Sensing: A Survey [6.036426846159163]
ファンデーションモデルは、前例のない精度と効率で幅広いタスクを実行することができる大規模で事前訓練されたAIモデルである。
本調査は, 遠隔センシングにおける基礎モデルの開発と応用を継続するために, 進展のパノラマと将来性のある経路を提供することによって, 研究者や実践者の資源として機能することを目的としている。
論文 参考訳(メタデータ) (2024-08-06T22:39:34Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
我々は、余分なデータやアノテーションを必要とせずに、幾何学保存深度を予測するためにモデルを訓練する学習フレームワークを提案する。
包括的な実験は、我々のフレームワークの優れた一般化能力を強調します。
我々の革新的な損失関数は、ドメイン固有のスケール・アンド・シフト係数を自律的に復元するモデルを可能にします。
論文 参考訳(メタデータ) (2023-09-18T12:36:39Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。