COBias and Debias: Minimizing Language Model Pairwise Accuracy Bias via Nonlinear Integer Programming
- URL: http://arxiv.org/abs/2405.07623v1
- Date: Mon, 13 May 2024 10:30:33 GMT
- Title: COBias and Debias: Minimizing Language Model Pairwise Accuracy Bias via Nonlinear Integer Programming
- Authors: Ruixi Lin, Yang You,
- Abstract summary: We tackle language models' imbalance in per-class prediction accuracy by reconceptualizing it as the Contextuality Bias (COBias)
We are the first to engage nonlinear integer programming (NIP) to debias it.
DNIP simultaneously achieves significant COBias reduction and accuracy improvement over the conventional ICL approach.
- Score: 12.287692969438169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For language model classification, would you prefer having only one workable class or having every class working? The latter makes more practical uses. Especially for large language models (LLMs), the fact that they achieve a fair overall accuracy by in-context learning (ICL) obscures a large difference in individual class accuracies. In this work, we uncover and tackle language models' imbalance in per-class prediction accuracy by reconceptualizing it as the Contextual Oddity Bias (COBias), and we are the first to engage nonlinear integer programming (NIP) to debias it. Briefly, COBias refers to the difference in accuracy by a class A compared to its ''odd'' class, which holds the majority wrong predictions of class A. With the COBias metric, we reveal that LLMs of varied scales and families exhibit large per-class accuracy differences. Then we propose Debiasing as Nonlinear Integer Programming (DNIP) to correct ICL per-class probabilities for lower bias and higher overall accuracy. Our optimization objective is directly based on the evaluation scores by COBias and accuracy metrics, solved by simulated annealing. Evaluations on three LLMs across seven NLP classification tasks show that DNIP simultaneously achieves significant COBias reduction ($-27\%$) and accuracy improvement ($+12\%$) over the conventional ICL approach, suggesting that modeling pairwise class accuracy differences is a direction in pushing forward more accurate, more reliable LLM predictions.
Related papers
- Preference Learning Algorithms Do Not Learn Preference Rankings [62.335733662381884]
We study the conventional wisdom that preference learning trains models to assign higher likelihoods to more preferred outputs than less preferred outputs.
We find that most state-of-the-art preference-tuned models achieve a ranking accuracy of less than 60% on common preference datasets.
arXiv Detail & Related papers (2024-05-29T21:29:44Z) - Teacher-Student Training for Debiasing: General Permutation Debiasing for Large Language Models [39.82130327284791]
Large Language Models (LLMs) have demonstrated impressive zero-shot capabilities and versatility in NLP tasks.
They sometimes fail to maintain crucial invariances for specific tasks.
This paper addresses this inefficiency at inference time.
arXiv Detail & Related papers (2024-03-20T13:38:07Z) - Understanding the Detrimental Class-level Effects of Data Augmentation [63.1733767714073]
achieving optimal average accuracy comes at the cost of significantly hurting individual class accuracy by as much as 20% on ImageNet.
We present a framework for understanding how DA interacts with class-level learning dynamics.
We show that simple class-conditional augmentation strategies improve performance on the negatively affected classes.
arXiv Detail & Related papers (2023-12-07T18:37:43Z) - Semi-Supervised Learning with Multiple Imputations on Non-Random Missing
Labels [0.0]
Semi-Supervised Learning (SSL) is implemented when algorithms are trained on both labeled and unlabeled data.
This paper proposes two new methods of combining multiple imputation models to achieve higher accuracy and less bias.
arXiv Detail & Related papers (2023-08-15T04:09:53Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - Deep Negative Correlation Classification [82.45045814842595]
Existing deep ensemble methods naively train many different models and then aggregate their predictions.
We propose deep negative correlation classification (DNCC)
DNCC yields a deep classification ensemble where the individual estimator is both accurate and negatively correlated.
arXiv Detail & Related papers (2022-12-14T07:35:20Z) - Fairly Accurate: Learning Optimal Accuracy vs. Fairness Tradeoffs for
Hate Speech Detection [8.841221697099687]
We introduce a differentiable measure that enables direct optimization of group fairness in model training.
We evaluate our methods on the specific task of hate speech detection.
Empirical results across convolutional, sequential, and transformer-based neural architectures show superior empirical accuracy vs. fairness trade-offs over prior work.
arXiv Detail & Related papers (2022-04-15T22:11:25Z) - A Gating Model for Bias Calibration in Generalized Zero-shot Learning [18.32369721322249]
Generalized zero-shot learning (GZSL) aims at training a model that can generalize to unseen class data by only using auxiliary information.
One of the main challenges in GZSL is a biased model prediction toward seen classes caused by overfitting on only available seen class data during training.
We propose a two-stream autoencoder-based gating model for GZSL.
arXiv Detail & Related papers (2022-03-08T16:41:06Z) - The Interplay between Distribution Parameters and the
Accuracy-Robustness Tradeoff in Classification [0.0]
Adrial training tends to result in models that are less accurate on natural (unperturbed) examples compared to standard models.
This can be attributed to either an algorithmic shortcoming or a fundamental property of the training data distribution.
In this work, we focus on the latter case under a binary Gaussian mixture classification problem.
arXiv Detail & Related papers (2021-07-01T06:57:50Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
Neural networks trained on real-world datasets with long-tailed label distributions are biased towards frequent classes and perform poorly on infrequent classes.
We propose a method, Partial Label Masking (PLM), which utilizes this ratio during training.
Our method achieves strong performance when compared to existing methods on both multi-label (MultiMNIST and MSCOCO) and single-label (imbalanced CIFAR-10 and CIFAR-100) image classification datasets.
arXiv Detail & Related papers (2021-05-22T18:07:56Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.