Online Continual Learning via Logit Adjusted Softmax
- URL: http://arxiv.org/abs/2311.06460v2
- Date: Sun, 29 Sep 2024 14:48:55 GMT
- Title: Online Continual Learning via Logit Adjusted Softmax
- Authors: Zhehao Huang, Tao Li, Chenhe Yuan, Yingwen Wu, Xiaolin Huang,
- Abstract summary: Inter-class imbalance during training has been identified as a major cause of forgetting.
We present a simple adjustment of model logits during training can effectively resist prior class bias.
Our proposed method, Logit Adjusted Softmax, can mitigate the impact of inter-class imbalance not only in class-incremental but also in realistic general setups.
- Score: 24.327176079085703
- License:
- Abstract: Online continual learning is a challenging problem where models must learn from a non-stationary data stream while avoiding catastrophic forgetting. Inter-class imbalance during training has been identified as a major cause of forgetting, leading to model prediction bias towards recently learned classes. In this paper, we theoretically analyze that inter-class imbalance is entirely attributed to imbalanced class-priors, and the function learned from intra-class intrinsic distributions is the Bayes-optimal classifier. To that end, we present that a simple adjustment of model logits during training can effectively resist prior class bias and pursue the corresponding Bayes-optimum. Our proposed method, Logit Adjusted Softmax, can mitigate the impact of inter-class imbalance not only in class-incremental but also in realistic general setups, with little additional computational cost. We evaluate our approach on various benchmarks and demonstrate significant performance improvements compared to prior arts. For example, our approach improves the best baseline by 4.6% on CIFAR10.
Related papers
- Group Distributionally Robust Optimization can Suppress Class Imbalance Effect in Network Traffic Classification [8.388789651259671]
This paper focuses on network traffic classification in the presence of class imbalance.
We propose strategies for alleviating the class imbalance through the lens of group distributionally robust optimization.
Results show that our approach can not only suppress the negative effect of class imbalance but also improve the comprehensive performance in prediction.
arXiv Detail & Related papers (2024-09-28T02:45:14Z) - Gradient Reweighting: Towards Imbalanced Class-Incremental Learning [8.438092346233054]
Class-Incremental Learning (CIL) trains a model to continually recognize new classes from non-stationary data.
A major challenge of CIL arises when applying to real-world data characterized by non-uniform distribution.
We show that this dual imbalance issue causes skewed gradient updates with biased weights in FC layers, thus inducing over/under-fitting and catastrophic forgetting in CIL.
arXiv Detail & Related papers (2024-02-28T18:08:03Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
Few-shot class-incremental learning aims at recognizing novel classes continually with limited novel class samples.
Recent methods somewhat alleviate the accuracy imbalance between base and incremental classes by fine-tuning the feature extractor in the incremental sessions.
We propose a novel method to mitigate model bias of the FSCIL problem during training and inference processes.
arXiv Detail & Related papers (2024-02-01T10:37:41Z) - Simplifying Neural Network Training Under Class Imbalance [77.39968702907817]
Real-world datasets are often highly class-imbalanced, which can adversely impact the performance of deep learning models.
The majority of research on training neural networks under class imbalance has focused on specialized loss functions, sampling techniques, or two-stage training procedures.
We demonstrate that simply tuning existing components of standard deep learning pipelines, such as the batch size, data augmentation, and label smoothing, can achieve state-of-the-art performance without any such specialized class imbalance methods.
arXiv Detail & Related papers (2023-12-05T05:52:44Z) - Overcoming Recency Bias of Normalization Statistics in Continual
Learning: Balance and Adaptation [67.77048565738728]
Continual learning involves learning a sequence of tasks and balancing their knowledge appropriately.
We propose Adaptive Balance of BN (AdaB$2$N), which incorporates appropriately a Bayesian-based strategy to adapt task-wise contributions.
Our approach achieves significant performance gains across a wide range of benchmarks.
arXiv Detail & Related papers (2023-10-13T04:50:40Z) - Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing Label Bias in Foundation Models [75.9543301303586]
Foundation models like CLIP allow zero-shot transfer on various tasks without additional training data.
Fine-tuning and ensembling are also commonly adopted to better fit the downstream tasks.
However, we argue that prior work has overlooked the inherent biases in foundation models.
arXiv Detail & Related papers (2023-10-12T08:01:11Z) - Class-Imbalanced Graph Learning without Class Rebalancing [62.1368829847041]
Class imbalance is prevalent in real-world node classification tasks and poses great challenges for graph learning models.
In this work, we approach the root cause of class-imbalance bias from an topological paradigm.
We devise a lightweight topological augmentation framework BAT to mitigate the class-imbalance bias without class rebalancing.
arXiv Detail & Related papers (2023-08-27T19:01:29Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - An Embarrassingly Simple Baseline for Imbalanced Semi-Supervised
Learning [103.65758569417702]
Semi-supervised learning (SSL) has shown great promise in leveraging unlabeled data to improve model performance.
We consider a more realistic and challenging setting called imbalanced SSL, where imbalanced class distributions occur in both labeled and unlabeled data.
We study a simple yet overlooked baseline -- SimiS -- which tackles data imbalance by simply supplementing labeled data with pseudo-labels.
arXiv Detail & Related papers (2022-11-20T21:18:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.