oTTC: Object Time-to-Contact for Motion Estimation in Autonomous Driving
- URL: http://arxiv.org/abs/2405.07698v1
- Date: Mon, 13 May 2024 12:34:18 GMT
- Title: oTTC: Object Time-to-Contact for Motion Estimation in Autonomous Driving
- Authors: Abdul Hannan Khan, Syed Tahseen Raza Rizvi, Dheeraj Varma Chittari Macharavtu, Andreas Dengel,
- Abstract summary: autonomous driving systems rely heavily on object detection to avoid collisions and drive safely.
Monocular 3D object detectors try to solve this problem by directly predicting 3D bounding boxes and object velocities given a camera image.
Recent research estimates time-to-contact in a per-pixel manner and suggests that it is more effective measure than velocity and depth combined.
We propose per-object time-to-contact estimation by extending object detection models to additionally predict the time-to-contact attribute for each object.
- Score: 4.707950656037167
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Autonomous driving systems require a quick and robust perception of the nearby environment to carry out their routines effectively. With the aim to avoid collisions and drive safely, autonomous driving systems rely heavily on object detection. However, 2D object detections alone are insufficient; more information, such as relative velocity and distance, is required for safer planning. Monocular 3D object detectors try to solve this problem by directly predicting 3D bounding boxes and object velocities given a camera image. Recent research estimates time-to-contact in a per-pixel manner and suggests that it is more effective measure than velocity and depth combined. However, per-pixel time-to-contact requires object detection to serve its purpose effectively and hence increases overall computational requirements as two different models need to run. To address this issue, we propose per-object time-to-contact estimation by extending object detection models to additionally predict the time-to-contact attribute for each object. We compare our proposed approach with existing time-to-contact methods and provide benchmarking results on well-known datasets. Our proposed approach achieves higher precision compared to prior art while using a single image.
Related papers
- UltimateDO: An Efficient Framework to Marry Occupancy Prediction with 3D Object Detection via Channel2height [2.975860548186652]
Occupancy and 3D object detection are two standard tasks in modern autonomous driving system.
We propose a method to achieve fast 3D object detection and occupancy prediction (UltimateDO)
arXiv Detail & Related papers (2024-09-17T13:14:13Z) - Line-based 6-DoF Object Pose Estimation and Tracking With an Event Camera [19.204896246140155]
Event cameras possess remarkable attributes such as high dynamic range, low latency, and resilience against motion blur.
We propose a line-based robust pose estimation and tracking method for planar or non-planar objects using an event camera.
arXiv Detail & Related papers (2024-08-06T14:36:43Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving.
We introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector.
We conduct extensive experiments on the KITTI, runtime, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD.
arXiv Detail & Related papers (2024-03-10T10:36:32Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
3D object detection with surround-view images is an essential task for autonomous driving.
We propose DETR4D, a Transformer-based framework that explores sparse attention and direct feature query for 3D object detection in multi-view images.
arXiv Detail & Related papers (2022-12-15T14:18:47Z) - DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on
Camera-LiDAR Fusion with Deep Association [8.34219107351442]
This paper proposes a robust camera-LiDAR fusion-based MOT method that achieves a good trade-off between accuracy and speed.
Our proposed method presents obvious advantages over the state-of-the-art MOT methods in terms of both tracking accuracy and processing speed.
arXiv Detail & Related papers (2022-02-24T13:36:29Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
We propose an end-to-end network for joint object detection and tracking based on radar and camera sensor fusion.
Our proposed method uses a center-based radar-camera fusion algorithm for object detection and utilizes a greedy algorithm for object association.
We evaluate our method on the challenging nuScenes dataset, where it achieves 20.0 AMOTA and outperforms all vision-based 3D tracking methods in the benchmark.
arXiv Detail & Related papers (2021-07-11T23:56:53Z) - Achieving Real-Time Object Detection on MobileDevices with Neural
Pruning Search [45.20331644857981]
We propose a compiler-aware neural pruning search framework to achieve high-speed inference on autonomous vehicles for 2D and 3D object detection.
For the first time, the proposed method achieves computation (close-to) real-time, 55ms and 99ms inference times for YOLOv4 based 2D object detection and PointPillars based 3D detection.
arXiv Detail & Related papers (2021-06-28T18:59:20Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
Two popular voxel-based 3D object detection methods are studied in this paper.
Our experiments show that these methods mostly fail to detect distant small objects due to the sparsity of the input point clouds at large distances.
Our findings suggest that a considerable part of the computations of existing methods is focused on locations of the scene that do not contribute with successful detection.
arXiv Detail & Related papers (2021-05-21T12:40:59Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Kinematic 3D Object Detection in Monocular Video [123.7119180923524]
We propose a novel method for monocular video-based 3D object detection which carefully leverages kinematic motion to improve precision of 3D localization.
We achieve state-of-the-art performance on monocular 3D object detection and the Bird's Eye View tasks within the KITTI self-driving dataset.
arXiv Detail & Related papers (2020-07-19T01:15:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.