Federated Hierarchical Tensor Networks: a Collaborative Learning Quantum AI-Driven Framework for Healthcare
- URL: http://arxiv.org/abs/2405.07735v2
- Date: Thu, 4 Jul 2024 01:27:00 GMT
- Title: Federated Hierarchical Tensor Networks: a Collaborative Learning Quantum AI-Driven Framework for Healthcare
- Authors: Amandeep Singh Bhatia, David E. Bernal Neira,
- Abstract summary: In today's context, Federated Learning (FL) stands out as a crucial remedy, facilitating the rapid advancement of distributed machine learning.
We propose a federated learning framework based on quantum tensor networks, which leverages the principles of many-body quantum physics.
Experiments on popular medical image datasets show that the federated quantum tensor network model achieved a mean receiver-operator characteristic area under the curve (ROC-AUC) between 0.91-0.98.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Healthcare industries frequently handle sensitive and proprietary data, and due to strict privacy regulations, they are often reluctant to share data directly. In today's context, Federated Learning (FL) stands out as a crucial remedy, facilitating the rapid advancement of distributed machine learning while effectively managing critical concerns regarding data privacy and governance. The fusion of federated learning and quantum computing represents a groundbreaking interdisciplinary approach with immense potential to revolutionize various industries, from healthcare to finance. In this work, we proposed a federated learning framework based on quantum tensor networks, which leverages the principles of many-body quantum physics. Currently, there are no known classical tensor networks implemented in federated settings. Furthermore, we investigated the effectiveness and feasibility of the proposed framework by conducting a differential privacy analysis to ensure the security of sensitive data across healthcare institutions. Experiments on popular medical image datasets show that the federated quantum tensor network model achieved a mean receiver-operator characteristic area under the curve (ROC-AUC) between 0.91-0.98. Experimental results demonstrate that the quantum federated global model, consisting of highly entangled tensor network structures, showed better generalization and robustness and achieved higher testing accuracy, surpassing the performance of locally trained clients under unbalanced data distributions among healthcare institutions.
Related papers
- Feasibility Analysis of Federated Neural Networks for Explainable Detection of Atrial Fibrillation [1.6053176639259055]
Early detection of atrial fibrillation (AFib) is challenging due to its asymptomatic and paroxysmal nature.
This study assesses the feasibility of training a neural network on a Federated Learning (FL) platform to detect AFib using raw ECG data.
arXiv Detail & Related papers (2024-10-14T15:06:10Z) - FedQNN: Federated Learning using Quantum Neural Networks [3.9554540293311864]
This study explores the innovative domain of Quantum Federated Learning (QFL) as a framework for training Quantum Machine Learning (QML) models via distributed networks.
Our proposed Federated Quantum Neural Network (FedQNN) framework emerges as a cutting-edge solution, integrating the singular characteristics of QML with the principles of classical federated learning.
arXiv Detail & Related papers (2024-03-16T08:58:03Z) - Fed-QSSL: A Framework for Personalized Federated Learning under Bitwidth
and Data Heterogeneity [14.313847382199059]
Federated quantization-based self-supervised learning scheme (Fed-QSSL) designed to address heterogeneity in FL systems.
Fed-QSSL deploys de-quantization, weighted aggregation and re-quantization, ultimately creating models personalized to both data distribution and specific infrastructure of each client's device.
arXiv Detail & Related papers (2023-12-20T19:11:19Z) - Fairness and Privacy in Federated Learning and Their Implications in
Healthcare [0.0]
This paper endeavors to outline the typical lifecycle of fair federated learning in research as well as provide an updated taxonomy to account for the current state of fairness in implementations.
arXiv Detail & Related papers (2023-08-15T14:32:16Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - Exact Decomposition of Quantum Channels for Non-IID Quantum Federated
Learning [0.0]
Federated learning refers to the task of performing machine learning with decentralized data from multiple clients while protecting data security and privacy.
We show that when the clients' data are not independent and identically distributed (IID), the performance of conventional federated algorithms deteriorates.
We prove that a global quantum channel can be exactly decomposed into channels trained by each client with the help of local density estimators.
arXiv Detail & Related papers (2022-09-02T00:38:44Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
Federated learning is a distributed machine learning approach which enables a shared server model to learn by aggregating the locally-computed parameter updates with the training data from spatially-distributed client silos.
We propose the Federated Invariant Learning Consistency (FedILC) approach, which leverages the gradient covariance and the geometric mean of Hessians to capture both inter-silo and intra-silo consistencies.
This is relevant to various fields such as medical healthcare, computer vision, and the Internet of Things (IoT)
arXiv Detail & Related papers (2022-05-19T03:32:03Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - FedDG: Federated Domain Generalization on Medical Image Segmentation via
Episodic Learning in Continuous Frequency Space [63.43592895652803]
Federated learning allows distributed medical institutions to collaboratively learn a shared prediction model with privacy protection.
While at clinical deployment, the models trained in federated learning can still suffer from performance drop when applied to completely unseen hospitals outside the federation.
We present a novel approach, named as Episodic Learning in Continuous Frequency Space (ELCFS), for this problem.
The effectiveness of our method is demonstrated with superior performance over state-of-the-arts and in-depth ablation experiments on two medical image segmentation tasks.
arXiv Detail & Related papers (2021-03-10T13:05:23Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.