Practical quantum federated learning and its experimental demonstration
- URL: http://arxiv.org/abs/2501.12709v1
- Date: Wed, 22 Jan 2025 08:28:11 GMT
- Title: Practical quantum federated learning and its experimental demonstration
- Authors: Zhi-Ping Liu, Xiao-Yu Cao, Hao-Wen Liu, Xiao-Ran Sun, Yu Bao, Yu-Shuo Lu, Hua-Lei Yin, Zeng-Bing Chen,
- Abstract summary: We propose a practical quantum federated learning framework on quantum networks.
We experimentally validate our framework on a 4-client quantum network with a scalable structure.
Our work provides critical insights for building scalable, efficient, and quantum-secure machine learning systems.
- Score: 16.652124459831946
- License:
- Abstract: Federated learning is essential for decentralized, privacy-preserving model training in the data-driven era. Quantum-enhanced federated learning leverages quantum resources to address privacy and scalability challenges, offering security and efficiency advantages beyond classical methods. However, practical and scalable frameworks addressing privacy concerns in the quantum computing era remain undeveloped. Here, we propose a practical quantum federated learning framework on quantum networks, utilizing distributed quantum secret keys to protect local model updates and enable secure aggregation with information-theoretic security. We experimentally validate our framework on a 4-client quantum network with a scalable structure. Extensive numerical experiments on both quantum and classical datasets show that adding a quantum client significantly enhances the trained global model's ability to classify multipartite entangled and non-stabilizer quantum datasets. Simulations further demonstrate scalability to 200 clients with classical models trained on the MNIST dataset, reducing communication costs by $75\%$ through advanced model compression techniques and achieving rapid training convergence. Our work provides critical insights for building scalable, efficient, and quantum-secure machine learning systems for the coming quantum internet era.
Related papers
- Enhancing Privacy in Federated Learning through Quantum Teleportation Integration [0.7614628596146599]
Federated learning enables model training across multiple clients without sharing raw data, thereby enhancing privacy.
Quantum teleportation ensures that data remains secure during transmission, as any eavesdropping attempt would be detectable.
We propose a novel architecture where quantum teleportation facilitates the secure exchange of model parameters and gradients among clients and servers.
arXiv Detail & Related papers (2024-12-30T07:15:21Z) - Quantum delegated and federated learning via quantum homomorphic encryption [0.5939164722752263]
We present a general framework that enables quantum delegated and federated learning with atheoretical data privacy guarantee.
We show that learning and inference under this framework feature substantially lower communication complexity compared with schemes based on blind quantum computing.
arXiv Detail & Related papers (2024-09-28T14:13:50Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Federated Learning With Quantum Networks [7.842152902652214]
We present a quantum-classical transfer learning scheme for classical data and communication with a hub-spoke topology.
While quantum communication is secure from eavesdrop attacks and no measurements from quantum to classical translation, due to no cloning theorem, hub-spoke topology is not ideal for quantum communication without quantum memory.
We also demonstrate the first successful use of quantum weights for quantum federated learning, which allows us to perform our training entirely in quantum.
arXiv Detail & Related papers (2023-10-23T16:45:29Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Federated Learning for Distributed Quantum Networks [9.766446130011706]
We propose a quantum federated learning for distributed quantum networks by utilizing interesting characteristics of quantum mechanics.
A quantum gradient descent algorithm is provided to help clients in the distributed quantum networks to train local models.
A quantum secure multi-party computation protocol is designed, which utilizes the Chinese residual theorem.
arXiv Detail & Related papers (2022-12-25T14:37:23Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
We design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations.
We experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
arXiv Detail & Related papers (2020-12-08T01:10:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.