FedQNN: Federated Learning using Quantum Neural Networks
- URL: http://arxiv.org/abs/2403.10861v1
- Date: Sat, 16 Mar 2024 08:58:03 GMT
- Title: FedQNN: Federated Learning using Quantum Neural Networks
- Authors: Nouhaila Innan, Muhammad Al-Zafar Khan, Alberto Marchisio, Muhammad Shafique, Mohamed Bennai,
- Abstract summary: This study explores the innovative domain of Quantum Federated Learning (QFL) as a framework for training Quantum Machine Learning (QML) models via distributed networks.
Our proposed Federated Quantum Neural Network (FedQNN) framework emerges as a cutting-edge solution, integrating the singular characteristics of QML with the principles of classical federated learning.
- Score: 3.9554540293311864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we explore the innovative domain of Quantum Federated Learning (QFL) as a framework for training Quantum Machine Learning (QML) models via distributed networks. Conventional machine learning models frequently grapple with issues about data privacy and the exposure of sensitive information. Our proposed Federated Quantum Neural Network (FedQNN) framework emerges as a cutting-edge solution, integrating the singular characteristics of QML with the principles of classical federated learning. This work thoroughly investigates QFL, underscoring its capability to secure data handling in a distributed environment and facilitate cooperative learning without direct data sharing. Our research corroborates the concept through experiments across varied datasets, including genomics and healthcare, thereby validating the versatility and efficacy of our FedQNN framework. The results consistently exceed 86% accuracy across three distinct datasets, proving its suitability for conducting various QML tasks. Our research not only identifies the limitations of classical paradigms but also presents a novel framework to propel the field of QML into a new era of secure and collaborative innovation.
Related papers
- Federated Hierarchical Tensor Networks: a Collaborative Learning Quantum AI-Driven Framework for Healthcare [0.0]
In today's context, Federated Learning (FL) stands out as a crucial remedy, facilitating the rapid advancement of distributed machine learning.
We propose a federated learning framework based on quantum tensor networks, which leverages the principles of many-body quantum physics.
Experiments on popular medical image datasets show that the federated quantum tensor network model achieved a mean receiver-operator characteristic area under the curve (ROC-AUC) between 0.91-0.98.
arXiv Detail & Related papers (2024-05-13T13:32:02Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
This paper introduces a new method to transfer knowledge from classical to quantum neural networks using knowledge distillation.
We adapt classical convolutional neural network (CNN) architectures like LeNet and AlexNet to serve as teacher networks.
Quantum models achieve an average accuracy improvement of 0.80% on the MNIST dataset and 5.40% on the more complex Fashion MNIST dataset.
arXiv Detail & Related papers (2023-11-23T05:06:43Z) - Foundations of Quantum Federated Learning Over Classical and Quantum
Networks [59.121263013213756]
Quantum federated learning (QFL) is a novel framework that integrates the advantages of classical federated learning (FL) with the computational power of quantum technologies.
QFL can be deployed over both classical and quantum communication networks.
arXiv Detail & Related papers (2023-10-23T02:56:00Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Entangled Datasets for Quantum Machine Learning [0.0]
We argue that one should instead employ quantum datasets composed of quantum states.
We show how a quantum neural network can be trained to generate the states in the NTangled dataset.
We also consider an alternative entanglement-based dataset, which is scalable and is composed of states prepared by quantum circuits.
arXiv Detail & Related papers (2021-09-08T02:20:13Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Hybrid Quantum-Classical Graph Convolutional Network [7.0132255816377445]
This research provides a hybrid quantum-classical graph convolutional network (QGCNN) for learning HEP data.
The proposed framework demonstrates an advantage over classical multilayer perceptron and convolutional neural networks in the aspect of number of parameters.
In terms of testing accuracy, the QGCNN shows comparable performance to a quantum convolutional neural network on the same HEP dataset.
arXiv Detail & Related papers (2021-01-15T16:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.