Hype or Heuristic? Quantum Reinforcement Learning for Join Order Optimisation
- URL: http://arxiv.org/abs/2405.07770v1
- Date: Mon, 13 May 2024 14:14:12 GMT
- Title: Hype or Heuristic? Quantum Reinforcement Learning for Join Order Optimisation
- Authors: Maja Franz, Tobias Winker, Sven Groppe, Wolfgang Mauerer,
- Abstract summary: Identifying optimal join orders (JOs) is a key challenge in database research and engineering.
Recent efforts have successfully explored reinforcement learning (RL) for JO.
We present a novel approach that uses quantum reinforcement learning (QRL) for JO based on a hybrid variational quantum ansatz.
- Score: 5.373015313199384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying optimal join orders (JOs) stands out as a key challenge in database research and engineering. Owing to the large search space, established classical methods rely on approximations and heuristics. Recent efforts have successfully explored reinforcement learning (RL) for JO. Likewise, quantum versions of RL have received considerable scientific attention. Yet, it is an open question if they can achieve sustainable, overall practical advantages with improved quantum processors. In this paper, we present a novel approach that uses quantum reinforcement learning (QRL) for JO based on a hybrid variational quantum ansatz. It is able to handle general bushy join trees instead of resorting to simpler left-deep variants as compared to approaches based on quantum(-inspired) optimisation, yet requires multiple orders of magnitudes fewer qubits, which is a scarce resource even for post-NISQ systems. Despite moderate circuit depth, the ansatz exceeds current NISQ capabilities, which requires an evaluation by numerical simulations. While QRL may not significantly outperform classical approaches in solving the JO problem with respect to result quality (albeit we see parity), we find a drastic reduction in required trainable parameters. This benefits practically relevant aspects ranging from shorter training times compared to classical RL, less involved classical optimisation passes, or better use of available training data, and fits data-stream and low-latency processing scenarios. Our comprehensive evaluation and careful discussion delivers a balanced perspective on possible practical quantum advantage, provides insights for future systemic approaches, and allows for quantitatively assessing trade-offs of quantum approaches for one of the most crucial problems of database management systems.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
We take inspiration from Kearns' SQ oracle and Valiant's weak evaluation oracle.
We introduce an extensive yet intuitive framework that yields unconditional lower bounds for learning from evaluation queries.
arXiv Detail & Related papers (2023-10-26T18:23:21Z) - Variational Quantum Approximate Spectral Clustering for Binary
Clustering Problems [0.7550566004119158]
We introduce the Variational Quantum Approximate Spectral Clustering (VQASC) algorithm.
VQASC requires optimization of fewer parameters than the system size, N, traditionally required in classical problems.
We present numerical results from both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-09-08T17:54:42Z) - Challenges of variational quantum optimization with measurement shot noise [0.0]
We study the scaling of the quantum resources to reach a fixed success probability as the problem size increases.
Our results suggest that hybrid quantum-classical algorithms should possibly avoid a brute force classical outer loop.
arXiv Detail & Related papers (2023-07-31T18:01:15Z) - Reinforcement Learning Quantum Local Search [0.0]
We propose a reinforcement learning (RL) based approach to train an agent for improved subproblem selection in Quantum Local Search (QLS)
Our results demonstrate that the RL agent effectively enhances the average approximation ratio of QLS on fully-connected random Ising problems.
arXiv Detail & Related papers (2023-04-13T13:07:19Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Quantum Deep Reinforcement Learning for Robot Navigation Tasks [2.6999000177990924]
We show that quantum circuits in hybrid quantum-classic reinforcement learning setups are capable of learning optimal policies in multiple robotic navigation scenarios.
We find that the employed quantum circuits outperform the classical neural network baselines when equating for the number of trainable parameters.
arXiv Detail & Related papers (2022-02-24T16:26:23Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
We introduce a training method for parametrized quantum circuits (PQCs) that can be used to solve RL tasks for discrete and continuous state spaces.
We investigate which architectural choices for quantum Q-learning agents are most important for successfully solving certain types of environments.
arXiv Detail & Related papers (2021-03-28T08:57:22Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.