論文の概要: The Power of Combined Modalities in Interactive Robot Learning
- arxiv url: http://arxiv.org/abs/2405.07817v1
- Date: Mon, 13 May 2024 14:59:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 13:15:58.829961
- Title: The Power of Combined Modalities in Interactive Robot Learning
- Title(参考訳): 対話型ロボット学習における複合モダリティの力
- Authors: Helen Beierling, Anna-Lisa Vollmer,
- Abstract要約: 本研究では,人間とのインタラクションにおけるロボット学習の進化に寄与し,多様な入力モダリティが学習結果に与える影響について検討する。
これは「メタモダリティ」の概念を導入し、従来の嗜好やスカラーフィードバックのメカニズムを超えて、さらなるフィードバックの形式をカプセル化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study contributes to the evolving field of robot learning in interaction with humans, examining the impact of diverse input modalities on learning outcomes. It introduces the concept of "meta-modalities" which encapsulate additional forms of feedback beyond the traditional preference and scalar feedback mechanisms. Unlike prior research that focused on individual meta-modalities, this work evaluates their combined effect on learning outcomes. Through a study with human participants, we explore user preferences for these modalities and their impact on robot learning performance. Our findings reveal that while individual modalities are perceived differently, their combination significantly improves learning behavior and usability. This research not only provides valuable insights into the optimization of human-robot interactive task learning but also opens new avenues for enhancing the interactive freedom and scaffolding capabilities provided to users in such settings.
- Abstract(参考訳): 本研究では,人間とのインタラクションにおけるロボット学習の進化に寄与し,多様な入力モダリティが学習結果に与える影響について検討する。
これは「メタモダリティ」の概念を導入し、従来の嗜好やスカラーフィードバックのメカニズムを超えて、さらなるフィードバックの形式をカプセル化する。
個々のメタモダリティに焦点を当てた以前の研究とは異なり、この研究は学習結果に対するそれらの組み合わせの効果を評価する。
人間の被験者による研究を通じて、これらのモダリティに対するユーザの嗜好と、ロボット学習のパフォーマンスへの影響を探索する。
その結果,個々のモダリティは異なる知覚を受けるが,それらの組み合わせは学習行動とユーザビリティを著しく改善することがわかった。
本研究は、ロボット間対話型タスク学習の最適化に関する貴重な知見を提供するだけでなく、ユーザに提供する対話的自由度と足場機能を高めるための新たな道を開く。
関連論文リスト
- Unveiling the Role of Expert Guidance: A Comparative Analysis of User-centered Imitation Learning and Traditional Reinforcement Learning [0.0]
本研究では,従来の強化学習法と比較して,模倣学習の性能,堅牢性,限界について検討する。
この研究から得られた洞察は、人間中心の人工知能の進歩に寄与する。
論文 参考訳(メタデータ) (2024-10-28T18:07:44Z) - Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
本稿では,視覚的・幾何学的手がかりを取り入れた視覚・幾何学的協調学習ネットワークを提案する。
本手法は,客観的指標と視覚的品質の代表的なモデルより優れている。
論文 参考訳(メタデータ) (2024-10-15T07:35:51Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Human-Robot Mutual Learning through Affective-Linguistic Interaction and Differential Outcomes Training [Pre-Print] [0.3811184252495269]
本研究では,感情言語コミュニケーションが人間ロボットの文脈における相互学習にどのように影響するかを検証する。
児童介護のダイナミックスからインスピレーションを得て、私たちの人間とロボットのインタラクションのセットアップは、内部的、ホメオスタティックに制御されたニーズのコミュニケーション方法を学ぶための(シミュレートされた)ロボットで構成されています。
論文 参考訳(メタデータ) (2024-07-01T13:35:08Z) - Improving Visual Perception of a Social Robot for Controlled and
In-the-wild Human-robot Interaction [10.260966795508569]
ソーシャルロボットが深層学習に基づく視覚知覚モデルを採用すると、客観的相互作用性能と主観的ユーザ体験がどう影響するかは明らかでない。
我々は、ペッパーロボットの視覚知覚機能を改善するために、最先端の人間の知覚と追跡モデルを用いている。
論文 参考訳(メタデータ) (2024-03-04T06:47:06Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - Exploring Interactions and Regulations in Collaborative Learning: An
Interdisciplinary Multimodal Dataset [40.193998859310156]
本稿では,協調的プロセスにおいて,協調的プロセスにおける規制が相互作用にどのように影響するかを検討するために,認知的および感情的トリガーを備えた新しいマルチモーダルデータセットを提案する。
意図的な介入を伴う学習課題を15歳以上の高校生に設計・割り当てする。
注記された感情、身体のジェスチャー、およびそれらの相互作用の分析は、デザインされた治療を伴うデータセットが、協調学習における規制の瞬間を効果的に調査できることを示唆している。
論文 参考訳(メタデータ) (2022-10-11T12:56:36Z) - Metaversal Learning Environments: Measuring, predicting and improving
interpersonal effectiveness [2.6424064030995957]
人工知能と仮想現実を組み合わせた新しいアーキテクチャを導入し,アバターを用いた没入型学習体験を実現する。
このフレームワークは、アバターと相互作用する個人の対人効果を測定することができる。
その結果, 対人効果に欠ける個人は, アバターとの相互作用が複数あった後, パフォーマンスが著しく向上したことが明らかとなった。
論文 参考訳(メタデータ) (2022-05-05T18:22:27Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。