論文の概要: Unveiling the Role of Expert Guidance: A Comparative Analysis of User-centered Imitation Learning and Traditional Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2410.21403v1
- Date: Mon, 28 Oct 2024 18:07:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:41:57.579097
- Title: Unveiling the Role of Expert Guidance: A Comparative Analysis of User-centered Imitation Learning and Traditional Reinforcement Learning
- Title(参考訳): 専門家指導の役割の解明--ユーザ中心の模倣学習と伝統的強化学習の比較分析
- Authors: Amr Gomaa, Bilal Mahdy,
- Abstract要約: 本研究では,従来の強化学習法と比較して,模倣学習の性能,堅牢性,限界について検討する。
この研究から得られた洞察は、人間中心の人工知能の進歩に寄与する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Integration of human feedback plays a key role in improving the learning capabilities of intelligent systems. This comparative study delves into the performance, robustness, and limitations of imitation learning compared to traditional reinforcement learning methods within these systems. Recognizing the value of human-in-the-loop feedback, we investigate the influence of expert guidance and suboptimal demonstrations on the learning process. Through extensive experimentation and evaluations conducted in a pre-existing simulation environment using the Unity platform, we meticulously analyze the effectiveness and limitations of these learning approaches. The insights gained from this study contribute to the advancement of human-centered artificial intelligence by highlighting the benefits and challenges associated with the incorporation of human feedback into the learning process. Ultimately, this research promotes the development of models that can effectively address complex real-world problems.
- Abstract(参考訳): 人間のフィードバックの統合は、インテリジェントシステムの学習能力向上に重要な役割を果たします。
この比較研究は、これらのシステムにおける従来の強化学習法と比較して、模倣学習の性能、堅牢性、限界について考察する。
人間のループからのフィードバックの価値を認識し,専門家指導と準最適実証が学習過程に与える影響について検討した。
既存のシミュレーション環境において,Unityプラットフォームを用いた広範な実験と評価を行うことで,これらの学習手法の有効性と限界を慎重に分析する。
本研究から得られた知見は,人間のフィードバックを学習プロセスに組み込むことによるメリットと課題を明らかにすることによって,人間中心人工知能の進歩に寄与する。
最終的に、この研究は複雑な現実世界の問題に効果的に対処できるモデルの開発を促進する。
関連論文リスト
- Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning [0.0]
大きな言語モデル(LLM)は、様々なタスクにまたがってその能力を実証している。
本稿では,LLMの推論と生成能力を利用して,2つの逐次意思決定タスクにおける人間の行動を予測する。
我々は,LLMの性能を,人間の経験的意思決定を模倣した認知的インスタンスベース学習モデルと比較した。
論文 参考訳(メタデータ) (2024-07-12T14:13:06Z) - The Power of Combined Modalities in Interactive Robot Learning [0.0]
本研究では,人間とのインタラクションにおけるロボット学習の進化に寄与し,多様な入力モダリティが学習結果に与える影響について検討する。
これは「メタモダリティ」の概念を導入し、従来の嗜好やスカラーフィードバックのメカニズムを超えて、さらなるフィードバックの形式をカプセル化する。
論文 参考訳(メタデータ) (2024-05-13T14:59:44Z) - Deep Active Learning: A Reality Check [30.19086526296748]
単一モデル法はエントロピーに基づくアクティブラーニングを決定的に上回るものではない。
評価を他のタスクに拡張し、半教師付き学習と組み合わせて能動的学習の有効性を探求する。
論文 参考訳(メタデータ) (2024-03-21T19:28:17Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Rethinking Learning Dynamics in RL using Adversarial Networks [79.56118674435844]
本稿では,スキル埋め込み空間を通じてパラメータ化された,密接に関連するスキルの強化学習のための学習機構を提案する。
本研究の主な貢献は、エントロピー規則化政策勾配定式化の助けを借りて、強化学習のための敵の訓練体制を定式化することである。
論文 参考訳(メタデータ) (2022-01-27T19:51:09Z) - Prioritized Experience-based Reinforcement Learning with Human Guidance:
Methdology and Application to Autonomous Driving [2.5895890901896124]
強化学習は、最適化と制御問題を解決するために、巧妙な定義と卓越した計算努力を必要とする。
本稿では,人間指導に基づく総合的な強化学習フレームワークを構築した。
強化学習アルゴリズムの効率性と性能を高めるために,人間の指導に適応する新たな優先体験再生機構を提案する。
論文 参考訳(メタデータ) (2021-09-26T07:19:26Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
強化学習は、シーケンシャルな意思決定問題を解決するための学習パラダイムである。
近年、ディープニューラルネットワークの急速な発展により、強化学習の顕著な進歩が見られた。
転校学習は 強化学習が直面する様々な課題に 対処するために生まれました
論文 参考訳(メタデータ) (2020-09-16T18:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。