Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
- URL: http://arxiv.org/abs/2405.07839v2
- Date: Mon, 3 Jun 2024 13:48:52 GMT
- Title: Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
- Authors: Haoyang Zheng, Hengrong Du, Qi Feng, Wei Deng, Guang Lin,
- Abstract summary: ReSGLD is an effective tool for non-vinquadatic learning tasks in large-scale datasets.
We explore the role of the simulation efficiency in constrained multi-modal distributions and image classification.
- Score: 10.290462113848054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Replica exchange stochastic gradient Langevin dynamics (reSGLD) is an effective sampler for non-convex learning in large-scale datasets. However, the simulation may encounter stagnation issues when the high-temperature chain delves too deeply into the distribution tails. To tackle this issue, we propose reflected reSGLD (r2SGLD): an algorithm tailored for constrained non-convex exploration by utilizing reflection steps within a bounded domain. Theoretically, we observe that reducing the diameter of the domain enhances mixing rates, exhibiting a $\textit{quadratic}$ behavior. Empirically, we test its performance through extensive experiments, including identifying dynamical systems with physical constraints, simulations of constrained multi-modal distributions, and image classification tasks. The theoretical and empirical findings highlight the crucial role of constrained exploration in improving the simulation efficiency.
Related papers
- Online Non-Stationary Stochastic Quasar-Convex Optimization [1.9244735303181755]
Recent research has shown that quasar activation function can be found in applications such as identification of linear systems and logistic systems.
We develop algorithms that exploit quasar-inspired design problems in a dynamic environment.
arXiv Detail & Related papers (2024-07-04T03:24:27Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - Tipping Points of Evolving Epidemiological Networks: Machine
Learning-Assisted, Data-Driven Effective Modeling [0.0]
We study the tipping point collective dynamics of an adaptive susceptible-infected (SIS) epidemiological network in a data-driven, machine learning-assisted manner.
We identify a complex effective differential equation (eSDE) in terms physically meaningful coarse mean-field variables.
We study the statistics of rare events both through repeated brute force simulations and by using established mathematical/computational tools.
arXiv Detail & Related papers (2023-11-01T19:33:03Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
We present a new method to perform Neural Posterior Estimation (NPE) with a differentiable simulator.
We demonstrate how gradient information helps constrain the shape of the posterior and improves sample-efficiency.
arXiv Detail & Related papers (2022-07-12T16:08:04Z) - Provable RL with Exogenous Distractors via Multistep Inverse Dynamics [85.52408288789164]
Real-world applications of reinforcement learning (RL) require the agent to deal with high-dimensional observations such as those generated from a megapixel camera.
Prior work has addressed such problems with representation learning, through which the agent can provably extract endogenous, latent state information from raw observations.
However, such approaches can fail in the presence of temporally correlated noise in the observations.
arXiv Detail & Related papers (2021-10-17T15:21:27Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Self-Regression Learning for Blind Hyperspectral Image Fusion Without
Label [11.291055330647977]
We propose a self-regression learning method that reconstructs hyperspectral image (HSI) and estimate the observation model.
In particular, we adopt an invertible neural network (INN) for restoring the HSI, and two fully-connected networks (FCN) for estimating the observation model.
Our model can outperform the state-of-the-art methods in experiments on both synthetic and real-world dataset.
arXiv Detail & Related papers (2021-03-31T04:48:21Z) - A Contour Stochastic Gradient Langevin Dynamics Algorithm for
Simulations of Multi-modal Distributions [17.14287157979558]
We propose an adaptively weighted gradient Langevin dynamics (SGLD) for learning in big data statistics.
The proposed algorithm is tested on benchmark datasets including CIFAR100.
arXiv Detail & Related papers (2020-10-19T19:20:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.