Multi-Task Learning for Fatigue Detection and Face Recognition of Drivers via Tree-Style Space-Channel Attention Fusion Network
- URL: http://arxiv.org/abs/2405.07845v1
- Date: Mon, 13 May 2024 15:34:20 GMT
- Title: Multi-Task Learning for Fatigue Detection and Face Recognition of Drivers via Tree-Style Space-Channel Attention Fusion Network
- Authors: Shulei Qu, Zhenguo Gao, Xiaowei Chen, Na Li, Yakai Wang, Xiaoxiao Wu,
- Abstract summary: In driving scenarios, automobile active safety systems are increasingly incorporating deep learning technology.
These systems typically need to handle multiple tasks simultaneously, such as detecting fatigue driving and recognizing the driver's identity.
We propose a novel tree-style multi-task modeling approach for multi-task learning, which rooted at a shared backbone.
- Score: 7.6695642174485705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In driving scenarios, automobile active safety systems are increasingly incorporating deep learning technology. These systems typically need to handle multiple tasks simultaneously, such as detecting fatigue driving and recognizing the driver's identity. However, the traditional parallel-style approach of combining multiple single-task models tends to waste resources when dealing with similar tasks. Therefore, we propose a novel tree-style multi-task modeling approach for multi-task learning, which rooted at a shared backbone, more dedicated separate module branches are appended as the model pipeline goes deeper. Following the tree-style approach, we propose a multi-task learning model for simultaneously performing driver fatigue detection and face recognition for identifying a driver. This model shares a common feature extraction backbone module, with further separated feature extraction and classification module branches. The dedicated branches exploit and combine spatial and channel attention mechanisms to generate space-channel fused-attention enhanced features, leading to improved detection performance. As only single-task datasets are available, we introduce techniques including alternating updation and gradient accumulation for training our multi-task model using only the single-task datasets. The effectiveness of our tree-style multi-task learning model is verified through extensive validations.
Related papers
- A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
We present an effective multi-task framework, VE-Prompt, which introduces visual exemplars via task-specific prompting.
Specifically, we generate visual exemplars based on bounding boxes and color-based markers, which provide accurate visual appearances of target categories.
We bridge transformer-based encoders and convolutional layers for efficient and accurate unified perception in autonomous driving.
arXiv Detail & Related papers (2023-03-03T08:54:06Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - Modular Adaptive Policy Selection for Multi-Task Imitation Learning
through Task Division [60.232542918414985]
Multi-task learning often suffers from negative transfer, sharing information that should be task-specific.
This is done by using proto-policies as modules to divide the tasks into simple sub-behaviours that can be shared.
We also demonstrate its ability to autonomously divide the tasks into both shared and task-specific sub-behaviours.
arXiv Detail & Related papers (2022-03-28T15:53:17Z) - Modular Networks Prevent Catastrophic Interference in Model-Based
Multi-Task Reinforcement Learning [0.8883733362171032]
We study whether model-based multi-task reinforcement learning benefits from shared dynamics models in a similar way model-free methods do from shared policy networks.
Using a single dynamics model, we see clear evidence of task confusion and reduced performance.
As a remedy, enforcing an internal structure for the learned dynamics model by training isolated sub-networks for each task notably improves performance.
arXiv Detail & Related papers (2021-11-15T12:31:31Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
One-step methods have been developed to handle pedestrian detection and identification sub-tasks using a single network.
There are two major challenges in the current one-step approaches.
We propose a decoupled and memory-reinforced network (DMRNet) to overcome these problems.
arXiv Detail & Related papers (2021-02-22T06:19:45Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z) - Multi-Task Learning via Co-Attentive Sharing for Pedestrian Attribute
Recognition [8.883961218702824]
Co-Attentive Sharing (CAS) module extracts discriminative channels and spatial regions for more effective feature sharing in multi-task learning.
Our module outperforms the conventional sharing units and achieves superior results compared to the state-of-the-art approaches using many metrics.
arXiv Detail & Related papers (2020-04-07T07:24:22Z) - A Unified Object Motion and Affinity Model for Online Multi-Object
Tracking [127.5229859255719]
We propose a novel MOT framework that unifies object motion and affinity model into a single network, named UMA.
UMA integrates single object tracking and metric learning into a unified triplet network by means of multi-task learning.
We equip our model with a task-specific attention module, which is used to boost task-aware feature learning.
arXiv Detail & Related papers (2020-03-25T09:36:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.