Radiomics-guided Multimodal Self-attention Network for Predicting Pathological Complete Response in Breast MRI
- URL: http://arxiv.org/abs/2406.02936v1
- Date: Wed, 5 Jun 2024 04:49:55 GMT
- Title: Radiomics-guided Multimodal Self-attention Network for Predicting Pathological Complete Response in Breast MRI
- Authors: Jonghun Kim, Hyunjin Park,
- Abstract summary: This study presents a model that predicts pCR in breast cancer patients using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) maps.
Our approach extracts features from both DCE MRI and ADC using an encoder with a self-attention mechanism, leveraging radiomics to guide feature extraction from tumor-related regions.
- Score: 3.6852491526879687
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Breast cancer is the most prevalent cancer among women and predicting pathologic complete response (pCR) after anti-cancer treatment is crucial for patient prognosis and treatment customization. Deep learning has shown promise in medical imaging diagnosis, particularly when utilizing multiple imaging modalities to enhance accuracy. This study presents a model that predicts pCR in breast cancer patients using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) maps. Radiomics features are established hand-crafted features of the tumor region and thus could be useful in medical image analysis. Our approach extracts features from both DCE MRI and ADC using an encoder with a self-attention mechanism, leveraging radiomics to guide feature extraction from tumor-related regions. Our experimental results demonstrate the superior performance of our model in predicting pCR compared to other baseline methods.
Related papers
- Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
We show that the best AUC is achieved by the CDI$s$ - optimized modality, outperforming the best gold-standard modality by 0.0044.
Notably, the optimized CDI$s$ modality also achieves AUC values over 0.02 higher than the Unoptimized CDI$s$ value.
arXiv Detail & Related papers (2024-05-13T16:07:58Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Exploring Kinetic Curves Features for the Classification of Benign and Malignant Breast Lesions in DCE-MRI [3.3382992386198675]
We propose to leverage the dynamic characteristics from the kinetic curves as well as the radiomic features to boost the classification accuracy of benign and malignant breast lesions.
The proposed method is evaluated on an in-house dataset including 200 DCE-MRI scans with 298 breast tumors.
arXiv Detail & Related papers (2024-04-22T07:08:13Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - PD-DWI: Predicting response to neoadjuvant chemotherapy in invasive
breast cancer with Physiologically-Decomposed Diffusion-Weighted MRI
machine-learning model [0.0]
We introduce PD-DWI, a physiologically decomposed DWI machine-learning model to predict pCR from DWI and clinical data.
Our model substantially improves the area under the curve (AUC), compared to the current best result on the leaderboard.
arXiv Detail & Related papers (2022-06-12T08:59:49Z) - Implementation of Convolutional Neural Network Architecture on 3D
Multiparametric Magnetic Resonance Imaging for Prostate Cancer Diagnosis [0.0]
We propose a novel deep learning approach for automatic classification of prostate lesions in magnetic resonance images.
Our framework achieved the classification performance with the area under a Receiver Operating Characteristic curve value of 0.87.
Our proposed framework reflects the potential of assisting medical image interpretation in prostate cancer and reducing unnecessary biopsies.
arXiv Detail & Related papers (2021-12-29T16:47:52Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.