Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation
- URL: http://arxiv.org/abs/2405.08049v1
- Date: Mon, 13 May 2024 16:07:58 GMT
- Title: Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation
- Authors: Chi-en Amy Tai, Alexander Wong,
- Abstract summary: We show that the best AUC is achieved by the CDI$s$ - optimized modality, outperforming the best gold-standard modality by 0.0044.
Notably, the optimized CDI$s$ modality also achieves AUC values over 0.02 higher than the Unoptimized CDI$s$ value.
- Score: 71.91773485443125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer is a significant cause of death from cancer in women globally, highlighting the need for improved diagnostic imaging to enhance patient outcomes. Accurate tumour identification is essential for diagnosis, treatment, and monitoring, emphasizing the importance of advanced imaging technologies that provide detailed views of tumour characteristics and disease. Synthetic correlated diffusion imaging (CDI$^s$) is a recent method that has shown promise for prostate cancer delineation compared to current MRI images. In this paper, we explore tuning the coefficients in the computation of CDI$^s$ for breast cancer tumour delineation by maximizing the area under the receiver operating characteristic curve (AUC) using a Nelder-Mead simplex optimization strategy. We show that the best AUC is achieved by the CDI$^s$ - Optimized modality, outperforming the best gold-standard modality by 0.0044. Notably, the optimized CDI$^s$ modality also achieves AUC values over 0.02 higher than the Unoptimized CDI$^s$ value, demonstrating the importance of optimizing the CDI$^s$ exponents for the specific cancer application.
Related papers
- Optimizing Lung Cancer Detection in CT Imaging: A Wavelet Multi-Layer Perceptron (WMLP) Approach Enhanced by Dragonfly Algorithm (DA) [0.294944680995069]
This study introduces a cutting-edge deep learning framework for the classification of lung cancer from CT scan imagery.
The research encompasses a suite of image pre-processing strategies, notably Canny edge detection, and wavelet transformations.
The methodology put forth has attained an impressive training and testing accuracy of 99.82%, underscoring its efficacy and reliability in the accurate diagnosis of lung cancer.
arXiv Detail & Related papers (2024-08-27T18:27:47Z) - Radiomics-guided Multimodal Self-attention Network for Predicting Pathological Complete Response in Breast MRI [3.6852491526879687]
This study presents a model that predicts pCR in breast cancer patients using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) maps.
Our approach extracts features from both DCE MRI and ADC using an encoder with a self-attention mechanism, leveraging radiomics to guide feature extraction from tumor-related regions.
arXiv Detail & Related papers (2024-06-05T04:49:55Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.