論文の概要: Science based AI model certification for new operational environments with application in traffic state estimation
- arxiv url: http://arxiv.org/abs/2405.07893v1
- Date: Mon, 13 May 2024 16:28:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 12:56:21.386758
- Title: Science based AI model certification for new operational environments with application in traffic state estimation
- Title(参考訳): 科学に基づくAIモデルによる新しい運用環境の認証と交通状況推定への応用
- Authors: Daryl Mupupuni, Anupama Guntu, Liang Hong, Kamrul Hasan, Leehyun Keel,
- Abstract要約: さまざまなエンジニアリング領域における人工知能(AI)の役割の拡大は、AIモデルを新たな運用環境にデプロイする際の課題を強調している。
本稿では,新しい運用環境における事前学習型データ駆動モデルの適用可能性を評価するための,科学ベースの認証手法を提案する。
- 参考スコア(独自算出の注目度): 1.2186759689780324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The expanding role of Artificial Intelligence (AI) in diverse engineering domains highlights the challenges associated with deploying AI models in new operational environments, involving substantial investments in data collection and model training. Rapid application of AI necessitates evaluating the feasibility of utilizing pre-trained models in unobserved operational settings with minimal or no additional data. However, interpreting the opaque nature of AI's black-box models remains a persistent challenge. Addressing this issue, this paper proposes a science-based certification methodology to assess the viability of employing pre-trained data-driven models in new operational environments. The methodology advocates a profound integration of domain knowledge, leveraging theoretical and analytical models from physics and related disciplines, with data-driven AI models. This novel approach introduces tools to facilitate the development of secure engineering systems, providing decision-makers with confidence in the trustworthiness and safety of AI-based models across diverse environments characterized by limited training data and dynamic, uncertain conditions. The paper demonstrates the efficacy of this methodology in real-world safety-critical scenarios, particularly in the context of traffic state estimation. Through simulation results, the study illustrates how the proposed methodology efficiently quantifies physical inconsistencies exhibited by pre-trained AI models. By utilizing analytical models, the methodology offers a means to gauge the applicability of pre-trained AI models in new operational environments. This research contributes to advancing the understanding and deployment of AI models, offering a robust certification framework that enhances confidence in their reliability and safety across a spectrum of operational conditions.
- Abstract(参考訳): さまざまなエンジニアリング領域における人工知能(AI)の役割の拡大は、新たな運用環境にAIモデルをデプロイする際の課題を強調しており、データ収集とモデルトレーニングに多大な投資をしている。
AIの迅速な適用は、最小または追加のデータを使用せずに、観測されていない運用環境で事前訓練されたモデルを使用することの可能性を評価する必要がある。
しかしながら、AIのブラックボックスモデルの不透明な性質を解釈することは、依然として永続的な課題である。
本稿では,新しい運用環境における事前学習型データ駆動モデルの適用可能性を評価するための,科学ベースの認証手法を提案する。
この方法論はドメイン知識の深い統合を提唱し、理論的および分析的モデルと物理および関連する分野、およびデータ駆動型AIモデルを活用する。
この新たなアプローチは、セキュアなエンジニアリングシステムの開発を促進するツールを導入し、AIベースのモデルの信頼性と安全性を、限られたトレーニングデータと、動的で不確実な条件によって特徴づけられるさまざまな環境にわたって保証する。
本研究は、特に交通状況推定の文脈において、現実世界の安全クリティカルなシナリオにおいて、この手法の有効性を実証する。
シミュレーションの結果から,提案手法が事前学習されたAIモデルによって提示される物理的不整合を効率的に定量化する方法について述べる。
分析モデルを利用することで、新しい運用環境における事前訓練されたAIモデルの適用性を評価する手段を提供する。
この研究は、AIモデルの理解とデプロイの促進に寄与し、さまざまな運用条件における信頼性と安全性の信頼性を高める堅牢な認証フレームワークを提供する。
関連論文リスト
- Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
現代の言語モデル(LM)は、能力評価において新たな課題を提起する。
メトリクスに自信を持つためには、モデルミアロジの新たな規律が必要です。
論文 参考訳(メタデータ) (2024-07-22T17:52:12Z) - Science based AI model certification for untrained operational environments with application in traffic state estimation [1.2186759689780324]
さまざまなエンジニアリング領域における人工知能(AI)の役割の拡大は、AIモデルを新たな運用環境にデプロイする際の課題を強調している。
本稿では,未訓練の運用環境における事前学習データ駆動モデルの適用可能性を評価するための,科学ベースの認証手法を提案する。
論文 参考訳(メタデータ) (2024-03-21T03:01:25Z) - Data Quality Aware Approaches for Addressing Model Drift of Semantic
Segmentation Models [1.6385815610837167]
本研究では,戦闘モデルドリフトに対する2つの顕著な品質意識戦略について検討した。
前者は画像品質評価の指標を活用して、厳密に高品質なトレーニングデータを選択し、モデルの堅牢性を向上させる。
後者は、既存のモデルから学んだベクトル機能を利用して、将来のデータの選択をガイドし、モデルの以前の知識と整合させる。
論文 参考訳(メタデータ) (2024-02-11T18:01:52Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Uncertainty-Aware Model-Based Reinforcement Learning with Application to
Autonomous Driving [2.3303341607459687]
本稿では,新しい不確実性を考慮したモデルに基づく強化学習フレームワークを提案する。
このフレームワークは適応的トランケーションアプローチに基づいて開発され、エージェントと環境モデルの間の仮想相互作用を提供する。
開発したアルゴリズムは、エンド・ツー・エンドの自動運転車制御タスクで実装され、様々な運転シナリオにおける最先端の手法と比較される。
論文 参考訳(メタデータ) (2021-06-23T06:55:14Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
本稿では,区間分析に基づく半形式的意思決定手法を提案する。
本手法は, 標準ベンチマークに比較して, 形式検証に対して比較結果を得る。
提案手法は, 意思決定モデルにおける安全性特性を効果的に評価することを可能にする。
論文 参考訳(メタデータ) (2020-10-19T11:18:06Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
本稿では,予測性能の最適化を目的とした定量的分析のための機械学習(ML)手法を提案する。
両フィールド間の潜在的な相乗効果について考察する。
我々は,コンピュータサイエンスの用語のデミスティフィケーションを目指して,定量的な社会科学の聴衆に手持ちの予測モデルの導入を行っている。
論文 参考訳(メタデータ) (2020-03-30T13:06:25Z) - Developing and Operating Artificial Intelligence Models in Trustworthy
Autonomous Systems [8.27310353898034]
このワーク・イン・プログレス・ペーパーはAIベースのASの開発と運用のギャップを埋めることを目的としている。
私たちはそれを実践するために、新しく包括的なDevOpsアプローチを提案します。
論文 参考訳(メタデータ) (2020-03-11T17:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。