Investigating the Semantic Robustness of CLIP-based Zero-Shot Anomaly Segmentation
- URL: http://arxiv.org/abs/2405.07969v1
- Date: Mon, 13 May 2024 17:47:08 GMT
- Title: Investigating the Semantic Robustness of CLIP-based Zero-Shot Anomaly Segmentation
- Authors: Kevin Stangl, Marius Arvinte, Weilin Xu, Cory Cornelius,
- Abstract summary: We investigate the performance of a zero-shot anomaly segmentation algorithm by perturbing test data using three semantic transformations.
We find that performance is consistently lowered on three CLIP backbones, regardless of model architecture or learning objective.
- Score: 2.722220619798093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-shot anomaly segmentation using pre-trained foundation models is a promising approach that enables effective algorithms without expensive, domain-specific training or fine-tuning. Ensuring that these methods work across various environmental conditions and are robust to distribution shifts is an open problem. We investigate the performance of WinCLIP [14] zero-shot anomaly segmentation algorithm by perturbing test data using three semantic transformations: bounded angular rotations, bounded saturation shifts, and hue shifts. We empirically measure a lower performance bound by aggregating across per-sample worst-case perturbations and find that average performance drops by up to 20% in area under the ROC curve and 40% in area under the per-region overlap curve. We find that performance is consistently lowered on three CLIP backbones, regardless of model architecture or learning objective, demonstrating a need for careful performance evaluation.
Related papers
- Robust Representation Consistency Model via Contrastive Denoising [83.47584074390842]
randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations.
diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples.
We reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space.
arXiv Detail & Related papers (2025-01-22T18:52:06Z) - Revisiting Self-Supervised Heterogeneous Graph Learning from Spectral Clustering Perspective [52.662463893268225]
Self-supervised heterogeneous graph learning (SHGL) has shown promising potential in diverse scenarios.
Existing SHGL methods encounter two significant limitations.
We introduce a novel framework enhanced by rank and dual consistency constraints.
arXiv Detail & Related papers (2024-12-01T09:33:20Z) - Curvature Informed Furthest Point Sampling [0.0]
We introduce a reinforcement learning-based sampling algorithm that enhances furthest point sampling (FPS)
Our approach ranks points by combining FPS-derived soft ranks with curvature scores computed by a deep neural network.
We provide comprehensive ablation studies, with both qualitative and quantitative insights into the effect of each feature on performance.
arXiv Detail & Related papers (2024-11-25T23:58:38Z) - Image Clustering Algorithm Based on Self-Supervised Pretrained Models and Latent Feature Distribution Optimization [4.39139858370436]
This paper introduces an image clustering algorithm based on self-supervised pretrained models and latent feature distribution optimization.
Our approach outperforms the latest clustering algorithms and achieves state-of-the-art clustering results.
arXiv Detail & Related papers (2024-08-04T04:08:21Z) - C3: Cross-instance guided Contrastive Clustering [8.953252452851862]
Clustering is the task of gathering similar data samples into clusters without using any predefined labels.
We propose a novel contrastive clustering method, Cross-instance guided Contrastive Clustering (C3)
Our proposed method can outperform state-of-the-art algorithms on benchmark computer vision datasets.
arXiv Detail & Related papers (2022-11-14T06:28:07Z) - Interpolation-based Contrastive Learning for Few-Label Semi-Supervised
Learning [43.51182049644767]
Semi-supervised learning (SSL) has long been proved to be an effective technique to construct powerful models with limited labels.
Regularization-based methods which force the perturbed samples to have similar predictions with the original ones have attracted much attention.
We propose a novel contrastive loss to guide the embedding of the learned network to change linearly between samples.
arXiv Detail & Related papers (2022-02-24T06:00:05Z) - Unsupervised Learning on 3D Point Clouds by Clustering and Contrasting [11.64827192421785]
unsupervised representation learning is a promising direction to auto-extract features without human intervention.
This paper proposes a general unsupervised approach, named textbfConClu, to perform the learning of point-wise and global features.
arXiv Detail & Related papers (2022-02-05T12:54:17Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
We present a novel boundary-aware loss term for semantic segmentation using an inverse-transformation network.
This plug-in loss term complements the cross-entropy loss in capturing boundary transformations.
We analyze the quantitative and qualitative effects of our loss function on three indoor and outdoor segmentation benchmarks.
arXiv Detail & Related papers (2021-04-06T18:52:45Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
We introduce a framework that abstracts out the properties of recalibration problems under differential privacy constraints.
We also design a novel recalibration algorithm, accuracy temperature scaling, that outperforms prior work on private datasets.
arXiv Detail & Related papers (2020-08-21T18:43:37Z) - Generalized Zero-Shot Learning Via Over-Complete Distribution [79.5140590952889]
We propose to generate an Over-Complete Distribution (OCD) using Conditional Variational Autoencoder (CVAE) of both seen and unseen classes.
The effectiveness of the framework is evaluated using both Zero-Shot Learning and Generalized Zero-Shot Learning protocols.
arXiv Detail & Related papers (2020-04-01T19:05:28Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.