Segment Any Crack: Deep Semantic Segmentation Adaptation for Crack Detection
- URL: http://arxiv.org/abs/2504.14138v1
- Date: Sat, 19 Apr 2025 02:12:15 GMT
- Title: Segment Any Crack: Deep Semantic Segmentation Adaptation for Crack Detection
- Authors: Ghodsiyeh Rostami, Po-Han Chen, Mahdi S. Hosseini,
- Abstract summary: This study introduces an efficient selective fine-tuning strategy, focusing on tuning normalization components, to enhance the adaptability of segmentation models for crack detection.<n> Experimental results demonstrate that selective fine-tuning of only normalization parameters outperforms full fine-tuning and other common fine-tuning techniques in both performance and computational efficiency.
- Score: 7.987499902582734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based crack detection algorithms are increasingly in demand in infrastructure monitoring, as early detection of cracks is of paramount importance for timely maintenance planning. While deep learning has significantly advanced crack detection algorithms, existing models often require extensive labeled datasets and high computational costs for fine-tuning, limiting their adaptability across diverse conditions. This study introduces an efficient selective fine-tuning strategy, focusing on tuning normalization components, to enhance the adaptability of segmentation models for crack detection. The proposed method is applied to the Segment Anything Model (SAM) and five well-established segmentation models. Experimental results demonstrate that selective fine-tuning of only normalization parameters outperforms full fine-tuning and other common fine-tuning techniques in both performance and computational efficiency, while improving generalization. The proposed approach yields a SAM-based model, Segment Any Crack (SAC), achieving a 61.22\% F1-score and 44.13\% IoU on the OmniCrack30k benchmark dataset, along with the highest performance across three zero-shot datasets and the lowest standard deviation. The results highlight the effectiveness of the adaptation approach in improving segmentation accuracy while significantly reducing computational overhead.
Related papers
- Predictive Maintenance Study for High-Pressure Industrial Compressors: Hybrid Clustering Models [39.58317527488534]
Clustering algorithms were evaluated using quality metrics like Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI)
These features enriched regression models, improving failure detection accuracy by 4.87 percent on average.
Cross validation and key performance metrics confirmed the benefits of clustering based features in predictive maintenance models.
arXiv Detail & Related papers (2024-11-21T08:14:26Z) - Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
We introduce Hybrid-Segmentor, an encoder-decoder based approach that is capable of extracting both fine-grained local and global crack features.
This allows the model to improve its generalization capabilities in distinguish various type of shapes, surfaces and sizes of cracks.
The proposed model outperforms existing benchmark models across 5 quantitative metrics (accuracy 0.971, precision 0.804, recall 0.744, F1-score 0.770, and IoU score 0.630), achieving state-of-the-art status.
arXiv Detail & Related papers (2024-09-04T16:47:16Z) - Investigating the Semantic Robustness of CLIP-based Zero-Shot Anomaly Segmentation [2.722220619798093]
We investigate the performance of a zero-shot anomaly segmentation algorithm by perturbing test data using three semantic transformations.
We find that performance is consistently lowered on three CLIP backbones, regardless of model architecture or learning objective.
arXiv Detail & Related papers (2024-05-13T17:47:08Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Evaluation and Comparison of Deep Learning Methods for Pavement Crack
Identification with Visual Images [0.0]
pavement crack identification with visual images via deep learning algorithms has the advantages of not being limited by the material of object to be detected.
In the aspect of patch sample classification, the fine-tuned TL models can be equivalent to or even slightly better than the ED models in accuracy.
In the aspect of accurate crack location, both ED and GAN algorithms can achieve pixel-level segmentation and is expected to be detected in real time on low computing power platform.
arXiv Detail & Related papers (2021-12-20T08:23:43Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - A Self-Refinement Strategy for Noise Reduction in Grammatical Error
Correction [54.569707226277735]
Existing approaches for grammatical error correction (GEC) rely on supervised learning with manually created GEC datasets.
There is a non-negligible amount of "noise" where errors were inappropriately edited or left uncorrected.
We propose a self-refinement method where the key idea is to denoise these datasets by leveraging the prediction consistency of existing models.
arXiv Detail & Related papers (2020-10-07T04:45:09Z) - Hierarchical and Efficient Learning for Person Re-Identification [19.172946887940874]
We propose a novel Hierarchical and Efficient Network (HENet) that learns hierarchical global, partial, and recovery features ensemble under the supervision of multiple loss combinations.
We also propose a new dataset augmentation approach, dubbed Random Polygon Erasing (RPE), to random erase irregular area of the input image for imitating the body part missing.
arXiv Detail & Related papers (2020-05-18T15:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.