論文の概要: Graphon Mean Field Games with a Representative Player: Analysis and Learning Algorithm
- arxiv url: http://arxiv.org/abs/2405.08005v2
- Date: Wed, 5 Jun 2024 02:51:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 00:09:48.185997
- Title: Graphon Mean Field Games with a Representative Player: Analysis and Learning Algorithm
- Title(参考訳): 代表選手によるグラフィオン平均フィールドゲーム:分析と学習アルゴリズム
- Authors: Fuzhong Zhou, Chenyu Zhang, Xu Chen, Xuan Di,
- Abstract要約: 軽度の仮定でグラノン平衡の存在と特異性を証明し、この平衡を用いてネットワーク上の有限プレイヤーゲームに対する近似解を構築することができることを示す。
オンラインのオラクルフリー学習アルゴリズムは平衡を数値的に解くために開発され、その収束のためにサンプル複雑性解析が提供される。
- 参考スコア(独自算出の注目度): 14.647775453098513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a discrete time graphon game formulation on continuous state and action spaces using a representative player to study stochastic games with heterogeneous interaction among agents. This formulation admits both philosophical and mathematical advantages, compared to a widely adopted formulation using a continuum of players. We prove the existence and uniqueness of the graphon equilibrium with mild assumptions, and show that this equilibrium can be used to construct an approximate solution for finite player game on networks, which is challenging to analyze and solve due to curse of dimensionality. An online oracle-free learning algorithm is developed to solve the equilibrium numerically, and sample complexity analysis is provided for its convergence.
- Abstract(参考訳): 本稿では,エージェント間の不均一な相互作用を伴う確率ゲームの研究に代表者を用いた連続状態とアクション空間の離散時間グラフゲーム定式化を提案する。
この定式化は、プレイヤーの連続体を用いた広く採用されている定式化と比較して、哲学的および数学的優位性の両方を認めている。
軽度の仮定でグラノン平衡の存在と特異性を証明し、この平衡を用いてネットワーク上の有限プレイヤーゲームに対する近似解を構築できることを示し、次元性の呪いによって解析と解決が困難である。
オンラインのオラクルフリー学習アルゴリズムは平衡を数値的に解くために開発され、その収束のためにサンプル複雑性解析が提供される。
関連論文リスト
- Nash Equilibria via Stochastic Eigendecomposition [4.190518009892366]
ナッシュ均衡は、パラメータへの純粋呼び出し、値分解とパワーの反復的変動によって近似できることを示す。
一般のゲームにおけるすべての平衡を、容易に利用できる線形代数ツールのみを用いて解くことを証明する擬符号と実験を提供する。
論文 参考訳(メタデータ) (2024-11-04T17:32:21Z) - Last-Iterate Convergence of Payoff-Based Independent Learning in Zero-Sum Stochastic Games [31.554420227087043]
両プレイヤー間のペイオフベース、収束、合理的、対称な学習ダイナミクスを開発する。
行列ゲーム設定では、結果はナッシュ分布を見つけるために$O(epsilon-1)$の複雑さを意味する。
ゲーム設定では、結果はナッシュ平衡を求めるために$O(epsilon-8)$の複雑さをも意味している。
論文 参考訳(メタデータ) (2024-09-02T20:07:25Z) - Neural Population Learning beyond Symmetric Zero-sum Games [52.20454809055356]
我々はNuPL-JPSROという,スキルの伝達学習の恩恵を受けるニューラル集団学習アルゴリズムを導入し,ゲームの粗相関(CCE)に収束する。
本研究は, 均衡収束型集団学習を大規模かつ汎用的に実施可能であることを示す。
論文 参考訳(メタデータ) (2024-01-10T12:56:24Z) - On the Convergence of No-Regret Learning Dynamics in Time-Varying Games [89.96815099996132]
時間変化ゲームにおける楽観的勾配降下(OGD)の収束を特徴付ける。
我々のフレームワークは、ゼロサムゲームにおけるOGDの平衡ギャップに対して鋭い収束境界をもたらす。
また,静的ゲームにおける動的後悔の保証に関する新たな洞察も提供する。
論文 参考訳(メタデータ) (2023-01-26T17:25:45Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
グラデーションへのアクセスを伴わない連続アクションゲームのナッシュ平衡を近似的に計算する問題について検討する。
ニューラルネットワークを用いてプレイヤーの戦略をモデル化する。
本論文は、制約のない混合戦略と勾配情報のない一般的な連続アクションゲームを解決する最初の方法である。
論文 参考訳(メタデータ) (2022-11-29T05:16:41Z) - Learning Correlated Equilibria in Mean-Field Games [62.14589406821103]
我々は平均場相関と粗相関平衡の概念を発展させる。
ゲームの構造に関する仮定を必要とせず,効率よくゲーム内で学習できることが示される。
論文 参考訳(メタデータ) (2022-08-22T08:31:46Z) - A unified stochastic approximation framework for learning in games [82.74514886461257]
ゲームにおける学習の長期的挙動(連続的・有限的)を解析するためのフレキシブルな近似フレームワークを開発する。
提案する分析テンプレートには,勾配に基づく手法,有限ゲームでの学習のための指数的/乗算的重み付け,楽観的および帯域的変異など,幅広い一般的な学習アルゴリズムが組み込まれている。
論文 参考訳(メタデータ) (2022-06-08T14:30:38Z) - Multiplayer Performative Prediction: Learning in Decision-Dependent
Games [18.386569111954213]
本稿では,マルチプレイヤー演奏予測のための新たなゲーム理論の枠組みを定式化する。
我々は、(i)パフォーマンス的に安定な平衡と(ii)ゲームのナッシュ平衡という、2つの異なる解の概念に焦点を当てる。
軽微な仮定の下では、様々なアルゴリズムにより、性能的に安定な平衡を効率的に見つけることができることを示す。
論文 参考訳(メタデータ) (2022-01-10T15:31:10Z) - Learning Graphon Mean Field Games and Approximate Nash Equilibria [33.77849245250632]
本稿では,弱い相互作用を持つグラノン平均場ゲームに対して,離散時間による新たな定式化を提案する。
理論的には、グラノン平均場解の広範かつ厳密な存在と近似特性を与える。
我々は,多くのエージェントを持つ非実現不可能な大密度グラフゲームにおいて,可塑性近似ナッシュ平衡を得ることに成功した。
論文 参考訳(メタデータ) (2021-11-29T16:16:11Z) - Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games [78.65798135008419]
一般的なゲームでStackelberg平衡を効率的に学習する方法は、サンプルから非常にオープンなままです。
本稿では,2プレーヤターンベース汎用ゲームにおけるStackelberg平衡のサンプル効率学習に関する理論的研究を開始する。
論文 参考訳(メタデータ) (2021-02-23T05:11:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。