Mitigating federated learning contribution allocation instability through randomized aggregation
- URL: http://arxiv.org/abs/2405.08044v2
- Date: Thu, 19 Dec 2024 16:08:31 GMT
- Title: Mitigating federated learning contribution allocation instability through randomized aggregation
- Authors: Arno Geimer, Beltran Fiz, Radu State,
- Abstract summary: Federated learning (FL) is a collaborative and privacy-preserving Machine Learning paradigm.
A critical challenge in FL lies in fairly and accurately allocating contributions from diverse participants.
Inaccurate allocation can undermine trust, lead to unfair compensation, and thus participants may lack the incentive to join or actively contribute to the federation.
- Score: 1.827018440608344
- License:
- Abstract: Federated learning (FL) is a collaborative and privacy-preserving Machine Learning paradigm, allowing the development of robust models without the need to centralise sensitive data. A critical challenge in FL lies in fairly and accurately allocating contributions from diverse participants. Inaccurate allocation can undermine trust, lead to unfair compensation, and thus participants may lack the incentive to join or actively contribute to the federation. Various remuneration strategies have been proposed to date, including auction-based approaches and Shapley-value based methods, the latter offering a means to quantify the contribution of each participant. However, little to no work has studied the stability of these contribution evaluation methods. In this paper, we focus on calculating contributions using gradient-based model reconstruction techniques with Shapley values. We first show that baseline Shapley values do not accurately reflect clients' contributions, leading to unstable reward allocations amongst participants in a cross-silo federation. We then introduce \textsc{FedRandom}, a new method that mitigates these shortcomings with additional data samplings, and show its efficacy at increasing the stability of contribution evaluation in federated learning.
Related papers
- DPVS-Shapley:Faster and Universal Contribution Evaluation Component in Federated Learning [1.740992908651449]
We introduce a component called Dynamic Pruning Validation Set Shapley (DPVS-Shapley)
This method accelerates the contribution assessment process by dynamically pruning the original dataset without compromising the evaluation's accuracy.
arXiv Detail & Related papers (2024-10-19T13:01:44Z) - Redefining Contributions: Shapley-Driven Federated Learning [3.9539878659683363]
Federated learning (FL) has emerged as a pivotal approach in machine learning.
It is challenging to ensure global model convergence when participants do not contribute equally and/or honestly.
This paper proposes a novel contribution assessment method called ShapFed for fine-grained evaluation of participant contributions in FL.
arXiv Detail & Related papers (2024-06-01T22:40:31Z) - Incentive Allocation in Vertical Federated Learning Based on Bankruptcy Problem [0.0]
Vertical federated learning (VFL) is a promising approach for collaboratively training machine learning models.
In this paper, we focus on the problem of allocating incentives to the passive parties by the active party.
Using the Talmudic division rule, which leads to the Nucleolus, we ensure a fair distribution of incentives.
arXiv Detail & Related papers (2023-07-07T11:08:18Z) - Conformal Prediction for Federated Uncertainty Quantification Under
Label Shift [57.54977668978613]
Federated Learning (FL) is a machine learning framework where many clients collaboratively train models.
We develop a new conformal prediction method based on quantile regression and take into account privacy constraints.
arXiv Detail & Related papers (2023-06-08T11:54:58Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
Federated learning (FL) emerges as a popular distributed learning schema that learns from a set of participating users without requiring raw data to be shared.
adversarial training (AT) provides a sound solution for centralized learning, extending its usage for FL users has imposed significant challenges.
We show that existing FL techniques cannot effectively propagate adversarial robustness among non-iid users.
We propose a simple yet effective propagation approach that transfers robustness through carefully designed batch-normalization statistics.
arXiv Detail & Related papers (2021-06-18T15:52:33Z) - Certifiably-Robust Federated Adversarial Learning via Randomized
Smoothing [16.528628447356496]
In this paper, we incorporate smoothing techniques into federated adversarial training to enable data-private distributed learning.
Our experiments show that such an advanced federated adversarial learning framework can deliver models as robust as those trained by the centralized training.
arXiv Detail & Related papers (2021-03-30T02:19:45Z) - Efficient Client Contribution Evaluation for Horizontal Federated
Learning [20.70853611040455]
The paper focuses on the horizontal FL framework, where client servers calculate parameter gradients over their local data, and upload the gradients to the central server.
The proposed method consistently outperforms the conventional leave-one-out method in terms of valuation authenticity as well as time complexity.
arXiv Detail & Related papers (2021-02-26T06:01:42Z) - Scalable Bayesian Inverse Reinforcement Learning [93.27920030279586]
We introduce Approximate Variational Reward Imitation Learning (AVRIL)
Our method addresses the ill-posed nature of the inverse reinforcement learning problem.
Applying our method to real medical data alongside classic control simulations, we demonstrate Bayesian reward inference in environments beyond the scope of current methods.
arXiv Detail & Related papers (2021-02-12T12:32:02Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
Federated learning (FL) is a popular technique to train machine learning (ML) models on decentralized data sources.
The Shapley value (SV) defines a unique payoff scheme that satisfies many desiderata for a data value notion.
This paper proposes a variant of the SV amenable to FL, which we call the federated Shapley value.
arXiv Detail & Related papers (2020-09-14T04:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.