DPVS-Shapley:Faster and Universal Contribution Evaluation Component in Federated Learning
- URL: http://arxiv.org/abs/2410.15093v1
- Date: Sat, 19 Oct 2024 13:01:44 GMT
- Title: DPVS-Shapley:Faster and Universal Contribution Evaluation Component in Federated Learning
- Authors: Ketin Yin, Zonghao Guo, ZhengHan Qin,
- Abstract summary: We introduce a component called Dynamic Pruning Validation Set Shapley (DPVS-Shapley)
This method accelerates the contribution assessment process by dynamically pruning the original dataset without compromising the evaluation's accuracy.
- Score: 1.740992908651449
- License:
- Abstract: In the current era of artificial intelligence, federated learning has emerged as a novel approach to addressing data privacy concerns inherent in centralized learning paradigms. This decentralized learning model not only mitigates the risk of data breaches but also enhances the system's scalability and robustness. However, this approach introduces a new challenge: how to fairly and accurately assess the contribution of each participant. Developing an effective contribution evaluation mechanism is crucial for federated learning. Such a mechanism incentivizes participants to actively contribute their data and computational resources, thereby improving the overall performance of the federated learning system. By allocating resources and rewards based on the size of the contributions, it ensures that each participant receives fair treatment, fostering sustained engagement.Currently, Shapley value-based methods are widely used to evaluate participants' contributions, with many researchers proposing modifications to adapt these methods to real-world scenarios. In this paper, we introduce a component called Dynamic Pruning Validation Set Shapley (DPVS-Shapley). This method accelerates the contribution assessment process by dynamically pruning the original dataset without compromising the evaluation's accuracy. Furthermore, this component can assign different weights to various samples, thereby allowing clients capable of distinguishing difficult examples to receive higher contribution scores.
Related papers
- Contribution Evaluation of Heterogeneous Participants in Federated Learning via Prototypical Representations [18.73128175231337]
contribution evaluation in federated learning (FL) has become a pivotal research area due to its applicability across various domains.
Existing contribution evaluation methods, which primarily rely on data volume, model similarity, and auxiliary test datasets, have shown success in diverse scenarios.
This paper explores contribution evaluation in FL from an entirely new perspective of representation.
arXiv Detail & Related papers (2024-07-02T09:05:43Z) - Redefining Contributions: Shapley-Driven Federated Learning [3.9539878659683363]
Federated learning (FL) has emerged as a pivotal approach in machine learning.
It is challenging to ensure global model convergence when participants do not contribute equally and/or honestly.
This paper proposes a novel contribution assessment method called ShapFed for fine-grained evaluation of participant contributions in FL.
arXiv Detail & Related papers (2024-06-01T22:40:31Z) - Mitigating federated learning contribution allocation instability through randomized aggregation [1.827018440608344]
Federated learning (FL) is a novel collaborative machine learning framework designed to preserve privacy while enabling the creation of robust models.
This paper investigates the fair and accurate attribution of contributions from various participants to the creation of the joint global model.
We introduce FedRandom, which is designed to sample contributions in a more equitable and distributed manner.
arXiv Detail & Related papers (2024-05-13T13:55:34Z) - Evaluating and Incentivizing Diverse Data Contributions in Collaborative
Learning [89.21177894013225]
For a federated learning model to perform well, it is crucial to have a diverse and representative dataset.
We show that the statistical criterion used to quantify the diversity of the data, as well as the choice of the federated learning algorithm used, has a significant effect on the resulting equilibrium.
We leverage this to design simple optimal federated learning mechanisms that encourage data collectors to contribute data representative of the global population.
arXiv Detail & Related papers (2023-06-08T23:38:25Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Deep Unfolding-based Weighted Averaging for Federated Learning in
Heterogeneous Environments [11.023081396326507]
Federated learning is a collaborative model training method that iterates model updates by multiple clients and aggregation of the updates by a central server.
To adjust the aggregation weights, this paper employs deep unfolding, which is known as the parameter tuning method.
The proposed method can handle large-scale learning models with the aid of pretrained models such as it can perform practical real-world tasks.
arXiv Detail & Related papers (2022-12-23T08:20:37Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z) - Transparent Contribution Evaluation for Secure Federated Learning on
Blockchain [10.920274650337559]
We propose a blockchain-based federated learning framework and a protocol to transparently evaluate each participants' contribution.
Our framework protects all parties' privacy in the model building phrase and transparently evaluates contributions based on the model updates.
arXiv Detail & Related papers (2021-01-26T05:49:59Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
Key to causal inference with observational data is achieving balance in predictive features associated with each treatment type.
Recent literature has explored representation learning to achieve this goal.
We develop an algorithm for flexible, scalable and accurate estimation of causal effects.
arXiv Detail & Related papers (2020-10-23T19:06:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.