On the Volatility of Shapley-Based Contribution Metrics in Federated Learning
- URL: http://arxiv.org/abs/2405.08044v3
- Date: Thu, 03 Apr 2025 13:13:46 GMT
- Title: On the Volatility of Shapley-Based Contribution Metrics in Federated Learning
- Authors: Arno Geimer, Beltran Fiz, Radu State,
- Abstract summary: Federated learning (FL) is a collaborative and privacy-preserving Machine Learning paradigm.<n>A critical challenge in FL lies in fairly and accurately allocating contributions from diverse participants.<n>Inaccurate allocation can undermine trust, lead to unfair compensation, and thus participants may lack the incentive to join or actively contribute to the federation.
- Score: 1.827018440608344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is a collaborative and privacy-preserving Machine Learning paradigm, allowing the development of robust models without the need to centralize sensitive data. A critical challenge in FL lies in fairly and accurately allocating contributions from diverse participants. Inaccurate allocation can undermine trust, lead to unfair compensation, and thus participants may lack the incentive to join or actively contribute to the federation. Various remuneration strategies have been proposed to date, including auction-based approaches and Shapley-value-based methods, the latter offering a means to quantify the contribution of each participant. However, little to no work has studied the stability of these contribution evaluation methods. In this paper, we evaluate participant contributions in federated learning using gradient-based model reconstruction techniques with Shapley values and compare the round-based contributions to a classic data contribution measurement scheme. We provide an extensive analysis of the discrepancies of Shapley values across a set of aggregation strategies, and examine them on an overall and a per-client level. We show that, between different aggregation techniques, Shapley values lead to unstable reward allocations among participants. Our analysis spans various data heterogeneity distributions, including independent and identically distributed (IID) and non-IID scenarios.
Related papers
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.
We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.
Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - DPVS-Shapley:Faster and Universal Contribution Evaluation Component in Federated Learning [1.740992908651449]
We introduce a component called Dynamic Pruning Validation Set Shapley (DPVS-Shapley)
This method accelerates the contribution assessment process by dynamically pruning the original dataset without compromising the evaluation's accuracy.
arXiv Detail & Related papers (2024-10-19T13:01:44Z) - CoAst: Validation-Free Contribution Assessment for Federated Learning based on Cross-Round Valuation [10.579048525756797]
CoAst is a practical method to assess the contribution without access to any validation data.
CoAst has comparable assessment reliability to existing validation-based methods and outperforms existing validation-free methods.
arXiv Detail & Related papers (2024-09-04T07:46:28Z) - Preference-Based Multi-Agent Reinforcement Learning: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Preference-Based Multi-Agent Reinforcement Learning (PbMARL)
We identify the Nash equilibrium from a preference-only offline dataset in general-sum games.
Our findings underscore the multifaceted approach required for PbMARL.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - Redefining Contributions: Shapley-Driven Federated Learning [3.9539878659683363]
Federated learning (FL) has emerged as a pivotal approach in machine learning.
It is challenging to ensure global model convergence when participants do not contribute equally and/or honestly.
This paper proposes a novel contribution assessment method called ShapFed for fine-grained evaluation of participant contributions in FL.
arXiv Detail & Related papers (2024-06-01T22:40:31Z) - Distribution-Free Fair Federated Learning with Small Samples [54.63321245634712]
FedFaiREE is a post-processing algorithm developed specifically for distribution-free fair learning in decentralized settings with small samples.
We provide rigorous theoretical guarantees for both fairness and accuracy, and our experimental results further provide robust empirical validation for our proposed method.
arXiv Detail & Related papers (2024-02-25T17:37:53Z) - Reinforcement Learning as a Catalyst for Robust and Fair Federated
Learning: Deciphering the Dynamics of Client Contributions [6.318638597489423]
Reinforcement Federated Learning (RFL) is a novel framework that leverages deep reinforcement learning to adaptively optimize client contribution during aggregation.
In terms of robustness, RFL outperforms state-of-the-art methods, while maintaining comparable levels of fairness.
arXiv Detail & Related papers (2024-02-08T10:22:12Z) - Incentive Allocation in Vertical Federated Learning Based on Bankruptcy
Problem [0.0]
Vertical federated learning (VFL) is a promising approach for collaboratively training machine learning models using private data partitioned vertically across different parties.
In this paper, we focus on the problem of allocating incentives to the passive parties by the active party based on their contributions to the VFL process.
We formulate this problem as a variant of the Nucleolus game theory concept, known as the Bankruptcy Problem, and solve it using the Talmud's division rule.
arXiv Detail & Related papers (2023-07-07T11:08:18Z) - Conformal Prediction for Federated Uncertainty Quantification Under
Label Shift [57.54977668978613]
Federated Learning (FL) is a machine learning framework where many clients collaboratively train models.
We develop a new conformal prediction method based on quantile regression and take into account privacy constraints.
arXiv Detail & Related papers (2023-06-08T11:54:58Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Offline Reinforcement Learning with Instrumental Variables in Confounded
Markov Decision Processes [93.61202366677526]
We study the offline reinforcement learning (RL) in the face of unmeasured confounders.
We propose various policy learning methods with the finite-sample suboptimality guarantee of finding the optimal in-class policy.
arXiv Detail & Related papers (2022-09-18T22:03:55Z) - Fair and efficient contribution valuation for vertical federated
learning [49.50442779626123]
Federated learning is a popular technology for training machine learning models on distributed data sources without sharing data.
The Shapley value (SV) is a provably fair contribution valuation metric originated from cooperative game theory.
We propose a contribution valuation metric called vertical federated Shapley value (VerFedSV) based on SV.
arXiv Detail & Related papers (2022-01-07T19:57:15Z) - GTG-Shapley: Efficient and Accurate Participant Contribution Evaluation
in Federated Learning [25.44023017628766]
Federated Learning (FL) bridges the gap between collaborative machine learning and preserving data privacy.
It is essential to fairly evaluate participants' contribution to the performance of the final FL model without exposing their private data.
We propose the Guided Truncation Gradient Shapley approach to address this challenge.
arXiv Detail & Related papers (2021-09-05T12:17:00Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
Federated learning (FL) emerges as a popular distributed learning schema that learns from a set of participating users without requiring raw data to be shared.
adversarial training (AT) provides a sound solution for centralized learning, extending its usage for FL users has imposed significant challenges.
We show that existing FL techniques cannot effectively propagate adversarial robustness among non-iid users.
We propose a simple yet effective propagation approach that transfers robustness through carefully designed batch-normalization statistics.
arXiv Detail & Related papers (2021-06-18T15:52:33Z) - FedH2L: Federated Learning with Model and Statistical Heterogeneity [75.61234545520611]
Federated learning (FL) enables distributed participants to collectively learn a strong global model without sacrificing their individual data privacy.
We introduce FedH2L, which is agnostic to both the model architecture and robust to different data distributions across participants.
In contrast to approaches sharing parameters or gradients, FedH2L relies on mutual distillation, exchanging only posteriors on a shared seed set between participants in a decentralized manner.
arXiv Detail & Related papers (2021-01-27T10:10:18Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
Federated learning (FL) is a popular technique to train machine learning (ML) models on decentralized data sources.
The Shapley value (SV) defines a unique payoff scheme that satisfies many desiderata for a data value notion.
This paper proposes a variant of the SV amenable to FL, which we call the federated Shapley value.
arXiv Detail & Related papers (2020-09-14T04:37:54Z) - Collaborative Fairness in Federated Learning [24.7378023761443]
We propose a novel Collaborative Fair Federated Learning (CFFL) framework for deep learning.
CFFL enforces participants to converge to different models, thus achieving fairness without compromising predictive performance.
Experiments on benchmark datasets demonstrate that CFFL achieves high fairness and delivers comparable accuracy to the Distributed framework.
arXiv Detail & Related papers (2020-08-27T14:39:09Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.